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9.3 Oscillation inequalities and the Hölder continuity . . . . . . . . . . . . . . . . . . . . 43
9.4 Time derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5 Proof of Theorem 3.1: (d) ⇒ (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.6 Proof of Theorem 3.1: (b) ⇒ (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.7 Proof of Theorem 3.1: (a) ⇒ (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.8 Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.9 Proof of (4.27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Introduction

******

2 Classical metheods

2.1 History in brief

Before explaining the results for sub-diffusive cases, let us very briefly overview the history for
diffusive cases. See [30, 72] etc. for details.

For any divergence operator L =
Pn

i,j=1
∂

∂xi
(aij(x) ∂

∂xj
) on Rn satisfying a uniform elliptic con-

dition, Aronson ([2]) proved (2.1) with µ(B(x, t1/2)) ≥ td/2. Later in the 20th century, there were
various outstanding results in the field of global analysis on manifolds. Let ∆ be the Laplace-Beltrami
operator on a complete Riemannian manifold X with the Riemannian metric d and with the Rieman-
nian measure µ. Li-Yau ([65]) proved the remarkable fact that if X has non-negative Ricci curvature,
then the heat kernel pt(x, y) satisfies

c1

µ(B(x, t1/2))
exp(−d(x, y)2

c1t
) ≤ pt(x, y) ≤ c2

µ(B(x, t1/2))
exp(−d(x, y)2

c2t
). (2.1)

A few years later, Grigor’yan ([39]) and Saloff-Coste ([73]) elegantly refined the result and proved,
in conjunction with the results by Fabes-Stroock ([34]) and Kusuoka-Stroock ([63]), that (2.1) is
equivalent to a volume doubling condition (VD) plus Poincaré inequalities (PI(2)) –see Appendix
for definition. The results were then extended to the framework of Dirichlet forms in [75, 76, 20], to
the framework of graphs in [32]. Detailed heat kernel estimates are strongly related to the control
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of harmonic functions, i.e. elliptic and parabolic Harnack inequalities (EHI), (PHI(2)) on X. The
origin of ideas and techniques used in this field go back to Nash ([70]), Moser ([68, 69]) and there
are many other significant works in this area. Summarizing, the following equivalence holds.

(2.1) ⇔ (V D) + (PI(2)) ⇔ (PHI(2)). (2.2)

An important corollary of this fact is, since (VD) and (PI(2)) are stable under certain perturbations
of the operator, that (2.1) and (PHI(2)) are also stable under these perturbations.

2.2 The Nash inequality

Let X be a locally compact separable metric space and let (E ,F) be a Dirichlet form on L2(X, µ). Let
−∆, {Pt} be the corresponding non-negative self-adjoint operator and the semigroup respectively.

The next theorem was proved by Carlen-Kusuoka-Stroock ([25]), where the original idea of the
proof of 1) ⇒ 2) was due to Nash [70].

Theorem 2.1 (The Nash inequality, [25])
The following are equivalent for any δ > 0.
1) There exist c1, θ > 0 such that for all f ∈ F ∩ L1,

kfk2+4/θ
2 ≤ c1(E(f, f) + δkfk2

2)kfk
4/θ
1 , (Nash)

where kfkp := (
R

X |f |pdµ)1/p.
2) For all t > 0, Pt(L1) ⊂ L∞ and it is a bounded operator. Moreover, there exist c2, θ > 0 such that

kPtk1→∞ ≤ c2e
δtt−θ/2, ∀t > 0.

Here kPtk1→∞ is an operator norm of Pt : L1 → L∞.

In order to prove the theorem, we prepare a lemma. For the lemma, E should merely be a sym-
metric closed form on a Hilbert space H. Set E1(·, ·) = E(·, ·) + (·, ·), where (·, ·) is the inner product
of H. (Then (E1,F) is a Hilbert space.) Throughout this subsection, we refer to [Kig].

Lemma 2.2
a) For all f ∈ Dom(−∆), E(Ptf, Ptf) is monotonically decreasing on t > 0 and limt↓0 E(Ptf, Ptf) =
E(f, f).
b) {Pt} is a strongly continuous semigroup on (E1,F).
c) Assume that {Pt} is a Markovian semigroup on L2(X, µ). Then kPtfk1 ≤ kfk1 for all f ∈ L2∩L1.

Proof. a) Note that ∆ is the generator of {Pt}, so that Ptf ∈ Dom(−∆). Note also that for
f, g ∈ Dom(−∆),

E(Ptf, g) = −(Ptf, ∆g) = −(∆Ptf, g) = − lim
h↓0

(
Ph − I

h
Ptf, g) = − lim

h↓0
(Pt

Ph − I

h
f, g)

= −(Pt∆f, g) = −(∆f, Ptg) = E(f, Ptg). (2.3)

Now let u(t) = E(Pt/2f, Pt/2f). Then, using (2.3), u(t) = E(f, Ptf) = −(∆f, Ptf), so that u0(t) =
−(∆f, ∆Ptf) = −(∆f, Pt∆f) = −(Pt/2∆f, Pt/2∆f) ≤ 0. Thus, u(t) is monotonically decreasing.
Since {Pt} is strongly continuous, u(t) = −(∆f, Ptf) → −(∆f, f) = E(f, f) as t ↓ 0.
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b) The semigroup property is clear, so we first prove the contraction property. Note that Dom(−∆)
is dense in F w.r.t. E1. For any f ∈ F , take {fn} ⊂ Dom(−∆) so that fn → f in E1. By
a), E(Ptfn, Ptfn) ≤ E(fn, fn) and {Ptfn}n is an E-Cauchy sequence. Since {Ptfn}n is an H-Cauchy
sequence as well, and Ptfn → Ptf inH, it follows that Ptfn → Ptf in E1. Hence E(Ptf, Ptf) ≤ E(f, f).
Strong continuity of {Pt} can be proved using a) and the approximation by a sequence in Dom(−∆).
c) First, we show that if 0 ≤ f ∈ L2, then 0 ≤ Ptf . Indeed, if we let fn = f · 1f−1([0,n]), then fn → f
in L2. Since 0 ≤ fn ≤ n, the Markov property of {Pt} implies that 0 ≤ Ptfn ≤ n. Taking n → ∞,
we obtain 0 ≤ Ptf . Using this, we have Pt|f | ≥| Ptf |, since −|f | ≤ f ≤ |f |. Using this fact and the
Markov property, we have for all f ∈ L2 ∩ L1 and all Borel set A ⊂ X,

(|Ptf |, 1A)2 ≤ (Pt|f |, 1A)2 = (|f |, Pt1A)2 ≤ kfk1,

where (f, g)2 :=
R

X f(x)g(x)dµ(x) for f, g ∈ L2. Hence we see that Ptf ∈ L1 and kPtfk1 ≤ kfk1. §

Proof of Theorem 2.1: 1) ⇒ 2) : Let f ∈ L2 ∩ L1 with kfk1 = 1 and u(t) := (Ptf, Ptf)2. Then,

u(t + h)− u(t)

h
=

1

h
(Pt+hf + Ptf, Pt+hf − Ptf)2 = (Pt+hf + Ptf,

(Ph − I)Ptf

h
)2

h↓0−→ 2(Ptf, ∆Ptf)2 = −2E(Ptf, Ptf).

Hence u0(t) = −2E(Ptf.Ptf). Now by 1),

2u(t)1+2/θ ≤ c1(−u0(t) + 2δu(t))kPtfk4/θ
1 ≤ c1(−u0(t) + 2δu(t)),

because kPtfk1 ≤ kfk1 = 1 (by Lemma 2.2 c)). Thus,

2(e−2δtu(t))1+2/θ ≤ 2e−2δtu(t)1+2/θ ≤ −c1(e
−2δtu(t))0.

Set v(t) = (e−2δtu(t))−2/θ, then we obtain v0(t) ≥ 4/(c1θ). Since limt↓0 v(t) = u(0)−2/θ > 0, it follows
that v(t) ≥ 4t/(c1θ). This means u(t) ≤ c2e2δtt−θ/2 where c2 = (c1θ/4)θ/2. Hence

kPtfk2 ≤ c3e
δtt−θ/4kfk1, ∀f ∈ L2 ∩ L1,

which implies kPtk1→2 ≤ c3eδtt−θ/4. Since Pt = Pt/2 ◦ Pt/2 and kPt/2k1→2 = kPt/2k2→∞, we obtain 2).
2) ⇒ 1) : Let f ∈ F ∩ L1. Then, for 0 < ≤ < t,

(e−δtPtf, f)2 = (e−δ≤P≤f, f)2 +

Z t

≤

(
∂

∂s
(e−δsPsf), f)2ds

= (e−δ≤P≤f, f)2 −
Z t

≤

e−δs((δI −∆)Psf, f)2ds.

Using Lemma 2.2 b),

e−δs((δI −∆)Psf, f)2 = δe−δs(Ps/2f, Ps/2f)2 − e−δs(Ps/2∆Ps/2f, f)2

= δe−δs(Ps/2f, Ps/2f)2 + e−δsE(Ps/2f, Ps/2f)2 ≤ δkfk2
2 + E(f, f).

On the other hand,
(Ptf, f)2 ≤ kPtk1→∞kfk2

1 ≤ c4e
δtt−θ/2kfk2

1,

where we used 2) in the second inequality. Combining these, we have

c4kfk2
1t
−θ/2 ≥ (e−δ≤P≤f, f)2 − (t− ≤)(δkfk2

2 + E(f, f)).
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Letting ≤ ↓ 0, we obtain

c4kfk2
1t
−θ/2 + t(δkfk2

2 + E(f, f)) ≥ kfk2
2 ∀t > 0.

Now taking t = {c4kfk2
1/(δkfk2

2 + E(f, f))}2/(2+θ), we obtain 1). §

Corollary 2.3 Suppose the Nash inequality (Theorem 2.1) holds. Let ϕ be an eigenfunction of −∆
with eigenvalue λ ≥ 1. Then

kϕk∞ ≤ c3λ
θ/4kϕk2,

where c3 > 0 is a constant independent of ϕ and λ.

Proof. Since −∆ϕ = λϕ, Ptϕ = e−tHϕ = e−λtϕ. By Theorem 2.1, kPtk2→∞ = kPtk1/2
1→∞ ≤ c1t−θ/4

for t ≤ 1. Thus
e−λtkϕk∞ = kPtϕk∞ ≤ c1t

−θ/4kϕk2.

Taking t = λ−1 and c3 = c1e, we obtain the result. §

Remark. Generalizations of Theorem 2.1 are given in [28, 77] etc. In subsection 8.1, we give a
localized version of such generalizations.

2.3 The Davies method

In [31] (see also [30]), E.B. Davies gave a general method to obtain the Gaussian off-diagonal estimate
from the Nash inequality. This method also gives the explicit constant in the exponential term of
the estimates.

Let F̂ := {h + c : h ∈ F b, c ∈ R} and F̂∞ := {ψ ∈ F̂ : e−2ψΓ(eψ, eψ) ø µ, e2ψΓ(e−ψ, e−ψ) ø µ}.
The following version of is due to Carlen-Kusuoka-Stroock ([25]).

Theorem 2.4 ([25] Theorem 3.25) Assume (Nash). Then, there is a constant c > 0 such that for
each ρ ∈ (0, 1],

pt(x, y) ≤ c (ρt)−θ/2e−E((1+ρ)t,x,y)+δρt for t > 0 and x, y ∈ X, (2.4)

where
E(t, x, y) := sup{|ψ(x)− ψ(y)|− tΛ(ψ)2 : Λ(ψ) < ∞}

with

Λ(ψ)2 := max

Ω
kd e−2ψΓ(eψ, eψ)

dµ
k∞, kd e2ψΓ(e−ψ, e−ψ)

dµ
k∞.

æ
.

The key inequality for the proof is

E(eψf 2p−1, e−ψf) ≥ p−1E(fp, fp)− 9pΛ(ψ)2kfk2p
2p,

which holds for all f ∈ F̂ and all p ∈ [1,∞) (see Theorem 3.9 [25]). Indeed, let ft(x) :=
eψ(x)[Pt(e−ψf)](x) and apply this inequality and (Nash) to

∂

∂t
kftk2p

2p = −2pE(eψf 2p−1
t , e−ψft).

One then obtains a differential inequality. Handling the inequality in a suitable way (Lemma 3.21 in
[25]), (2.4) can be obtained.
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Now consider the divergence operator L =
Pn

i,j=1
∂

∂xi
(aij(x) ∂

∂xj
) on Rn satisfying a uniform elliptic

condition; σ−1I ≤ a(·) ≤ σI for some σ ≥ 1. In this case, (Nash) holds with θ = n, δ = 0 and

Λ(ψ)2 = sup
x

(∇ψ(x), a(x)∇ψ(x)).

Let ρ = 1. Taking ψ(x) = θ · x for some θ ∈ Rn in (2.4), we get

pt(x, y) ≤ c1t
−n/2 exp(θ · (x− y) + 2kθk2σt).

Taking θ = (y − x)/(4σt), we obtain

pt(x, y) ≤ c1t
−n/2 exp(− |y − x|2

8σt
),

and the Gaussian upper bound is obtained.
In fact, we can get much sharper estimate. Let

dE (x, y) := sup{ψ(x)− ψ(y) : ψ ∈ F̂∞ ∩ C(X), Λ(ψ) ≤ 1}.

This is a metric and sometimes called an intrinsic metric. By a simple computation, we see

E((1 + ρ)t, x, y) =
dE (x, y)2

4(1 + ρ)t
.

So, we conclude

pt(x, y) ≤ c1(ρt)−n/2 exp(−
dE (x, y)2

4(1 + ρ)t
).

Remark. For the case discussed from Section 3 (when β > 2), this method does not work.
Indeed, it is known that for diffusions on ‘typical’ fractals, the energy measure is singular to the
Hausdorff measure ([47, 61]) so dE (x, y) ≡ 0.

2.4 Moser’s arguments

In [69], J. Moser proved elliptic Harnack inequalities ((EHI) – see subsection 3.2 for definition) for
harmonic functions of some class of differential operators (uniform elliptic divergence forms). There
the famous Moser’s iteration arguments were used. He then extended the methods and proved the
parabolic Harnack inequalities in [68]. Later, the arguments were simplified in [67]. In this subsection,
we will overview his arguments.

For simplicity we give the argument for the Laplace-Beltrami operator on a Riemannian manifold
X satisfying (VD), (PI(β)) (see subsection 3.2 for definition) and with regular volume growth

c1r
α ≤ µ(B(x, r)) ≤ c2r

α, x ∈ X, r ≥ 1.

Let µ be the Riemannian measure on X, and write

−
Z

B

f = µ(B)−1

Z

B

fdµ.

From (PI(β)) one obtains (see [72], [73] Section 5.2) the Sobolev inequality

≥
−
Z

B

|f |2κ
¥1/κ

≤ c1R
β−
Z

B

|∇f |2, (2.5)
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for f ∈ C∞
0 (B), where B has radius R ≥ 1 and κ = ᾱ/(ᾱ− 2) where ᾱ = 3 ∨ α.

Since we are now treating the Laplace-Beltrami operator, dΓ(f, f) = |∇f |2dµ for f ∈ F . Let
u > 0 be harmonic on B (note that u is continuous in B in this case). Let v = up for p > 0,
1/2 < a2 < a1 < 1, Bi := B(x0, aiR) and ϕ ∈ C∞

0 (B1) be a cut-off function for B2 ⊂ B1. By
“converse to the Poincaré inequality” (see Lemma 4.6 below),

Z

B1

|ϕ∇v|2 ≤ c2k∇ϕk2
∞

Z

B1

v2. (2.6)

Using (2.5) with f = v and (2.6),

(−
Z

B2

u2κp)1/κ ≤ c3R
β−
Z

B2

|∇v|2 ≤ c3R
β−
Z

B1

ϕ2|∇v|2 ≤ c4R
βk∇ϕk2

∞

Z

B1

v2.

Taking the “classical” cut-off function ϕ(x) = d(x,Bc)
R(a1−a2) , we have k∇ϕk2

∞ ≤ c5
(a1−a2)2R2 . Thus

(−
Z

B2

u2κp)1/κ ≤ c6R
β−2(a1 − a2)

−2−
Z

B1

u2p. (2.7)

Now, let ak = (1 + 2−k)/2, pk = pκk and Bk = B(x0, akR). (Then ak − ak+1 = 2−k−2.) Set
Ik = (−

R
Bk+1

u2pk)1/(2pk). Then, by (2.7) we have

Ik+1 ≤ (c7R
β−222k)1/(2pk)Ik.

By iteration (this part is the first part of Moser’s argument), we have

Ik ≤ Πk−1
l=0 (c7R

β−222l)1/(2pl)I0 ≤ c8R
c0(β−2)I0.

Here the last inequality is due to the fact
P

l κ
−l < ∞ and

P
l lκ

−l < ∞, because κ > 1. Take
k →∞. Since pk →∞ and u is continuous, we have

sup
y∈B(x0,R/2)

u(y) ≤ c8R
c0(β−2)(−

Z

B

u2p)1/(2p) =: c8R
c0(β−2)Φ(2p, B).

Thus, when β = 2, by the second part of Moser’s argument (which gives the comparison between
Φ(2p, B) and Φ(−2p, B)) gives

sup
B(x0,R/2)

u ≤ c1Φ(2p, B) ≤ c2Φ(−2p, B) ≤ c3 inf
B(x0,R/2)

u

and (EHI) is proved.

Remark. If β > 2, one still obtains an L∞ bound on u in B(x, R/2), but the constant now
depends on R, so that the final constant in the (EHI) will also depend on R! Similar problems would
arise if one tried other approaches, such as that in [34]. As we see, the problem arises in the first
(‘easy’) part of Moser’s argument. Instead of the linear cut-off functions, one needs cut-off functions
such that the term Rβ−2 in the right hand side of (2.7) disappears.

7



3 Framework and main theorem

3.1 Framework

We will consider two classes of spaces, namely metric measure Dirichlet spaces and weighted graphs.

Metric measure Dirichlet spaces Let (X, d) be a connected locally compact complete separable
metric space. We assume that the metric d is geodesic: for each x, y ∈ X there exists a (not necessarily
unique) geodesic path γ(x, y) such that for each z ∈ γ(x, y), we have d(x, z) + d(z, y) = d(x, y).
Let µ be a Borel measure on X such that 0 < µ(B) < ∞ for every ball B in X. We write
B(x, r) = {y : d(x, y) < r}, and V (x, r) = µ(B(x, r)). Note that under the assumptions above, the
closure of B(x, r) is compact for all x ∈ X and 0 < r < ∞. For simplicity in what follows, we
will also assume that X has infinite diameter, but similar results (with obvious modifications to the
statements and the proofs) hold when the diameter of X is finite. We will call such a space a metric
measure space, or a MM space.

Now let (E ,F) be a regular, strong local Dirichlet form on L2(X, µ): see [35] for details. We denote
by ∆ the corresponding (non-positive) self-adjoint operator; that is, we say h is in the domain of ∆ and
∆h = f if h ∈ F and E(h, g) = −

R
fg dµ for every g ∈ F . Let {Pt} be the corresponding semigroup.

(E ,F) is called conservative (or stochastically complete) if Pt1 = 1 for all t > 0. Throughout the
paper, we assume that (E ,F) is conservative. Since E is regular, E(f, g) can be written in terms of
a signed measure Γ(f, g). To be more precise, for f ∈ F b (the collection F b is the set of functions
in F that are essentially bounded) Γ(f, f) is the unique smooth Borel measure (called the energy
measure) on X satisfying

Z

X

g̃dΓ(f, f) = 2E(f, fg)− E(f 2, g), g ∈ F b,

where g̃ is the quasi-continuous modification of g ∈ F . (Recall that u : X → R is called quasi-
continuous if for any ε > 0, there exists an open set G ⊂ X such that Cap(G) < ε and u|X\G is
continuous. It is known that each u ∈ F admits a quasi-continuous modification ũ – see [35], Theorem
2.1.3.) Throughout the paper, we will abuse notation and take the quasi-continuous modification of
g ∈ F b without writing g̃. Γ(f, g) is defined by

Γ(f, g) =
1

2
(Γ(f + g, f + g)− Γ(f, f)− Γ(g, g)), f, g ∈ F .

Γ(f, g) is also local, linear in f and g, and satisfies the Leibniz and chain rules – see [35], p. 115-116.
That is, if f1, . . . , fm, g, and ϕ(f1, . . . , fm) are in F b, and ϕi denotes the partial derivative of ϕ in
the ith direction, we have:

dΓ(fg, h) = fdΓ(g, h) + gdΓ(f, h),

dΓ(ϕ(f1, . . . , fm), g) =
mX

i=1

ϕi(f1, . . . , fm)dΓ(fi, g).

We call (X, d, µ, E) a metric measure Dirichlet space, or a MMD space.
Let Y = (Yt, t ≥ 0, Px, x ∈ X} be the Hunt process associated with the Dirichlet form E on

L2(X, µ) – see [35], Theorem 7.2.1. Since E is strongly local, by [35], Theorem 7.2.2 Y is a diffusion.

Examples. 1. If X is a Riemannian manifold, we can take d to be the Riemannian metric and µ the
Riemannian measure. The Dirichlet form E is defined by taking its core C to be the C∞ functions
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on X with compact support, and defining

E(f, f) =

Z

X

|∇f |2dµ, f ∈ C.

The domain F of E is then the completion of C with respect to the norm ||f ||2 + E(f, f)1/2, and
dΓ(f, g) = ∇f ·∇g dµ.

2. Cable system of a graph. Given a weighted graph (G,E, ν) (see Definition 2.13 below) we can define
the cable system GC by replacing each edge of G by a copy of (0, 1), joined together in the obvious way at
the vertices. For further details see [9] etc. Let µ be the measure on GC given by taking dµ(t) = νxy dt for t
in the cable connecting x and y, where νxy is the conductance of the edge connecting x and y; see [9]. One
takes as the core C the functions in C(GC) which have compact support and are C1 on each cable, and sets

E(f, f) =
Z

GC

|f 0(t)|2dµ(t).

One use of this construction is that the restriction to G of a harmonic function h on GC yields a harmonic
function on G.

3. Let D be a domain in Rd with a smooth boundary. Then let C = C2
0 (D), µ be Lebesgue measure,

and
E(f, f) = 1

2

Z

D
|∇f |2dµ.

The associated Markov process Y is Brownian motion on D with normal reflection on ∂D. For the extension
of this construction to piecewise smooth domains such as the pre-Sierpinski carpet, see [10].

4. For fractal sets it is not as easy to describe E . However, let F ⊂ Rd be a connected set with diameter
1, and suppose that there exists a geodesic metric d on F . Let µ be the Hausdorff α-measure on F (with
respect to d) and suppose that

c1r
α ≤ µ(B(x, r)) ≤ c2r

α, x ∈ F, r > 0.

Let

Nσ,∞(f) = sup
0<r≤1

r−α−2σ
Z

F

Z

F
1B(y,r)(x)|f(x)− f(y)|2dµ(x)dµ(y),

Λσ
2,∞(F ) = {u ∈ L2(F, µ) : Nσ,∞(u) < ∞}.

There exist many fractals satisfying the above with a Dirichlet form E on L2(F, µ) for which the domain F
of E is given by Λβ/2

2,∞, and c1Nσ,∞(f) ≤ E(f, f) ≤ c2Nσ,∞(f); see [37, 60] etc.
In the particular case of the (compact) Sierpinski gasket F = FSG, let Fn be the set of vertices of

triangles of side 2−n; regard Fn as a graph with x ∼ y if and only if x and y are in some triangle of side
2−n. Then for f ∈ Λβ/2

2,∞ with β = log 5/ log 2, one has

E(f, f) = c lim
n→∞

(5/3)n
X

x∼y

(f(x)− f(y))2.

Weighted graphs Let (G,E) be an infinite locally finite connected graph. We write x ∼ y if (x, y) ∈ E,
i.e., there is an edge connecting x and y. Define edge weights (conductances) µxy = µyx ≥ 0, x, y ∈ G,
and assume that µ is adapted to the graph structure by requiring that µxy > 0 if and only if x ∼ y. Let
µx =

P
y µxy, and define a measure µ on G by µ(A) =

P
x∈A µx. We call (G,µ) a weighted graph.

We write d(x, y) for the graph distance, and define the balls

BG(x, r) = {y : d(x, y) < r}.

9



Given A ⊂ G write ∂A = {y ∈ Ac : d(x, y) = 1 for some x ∈ A} for the exterior boundary of A, and let
A = A ∪ ∂A.

A weighted graph (G,µ) has controlled weights if there exists p0 > 0 such that for all x, y ∈ G

µxy

µx
≥ p0, x ∼ y.

This was called the p0-condition in [41].

The Laplacian is defined on (G,µ) by

∆f(x) =
1
µx

X

y

µxy(f(y)− f(x)).

We also define a Dirichlet form (E ,F) by taking F = L2(G,µ), and

E(f, g) = 1
2

X

x

X

y

(f(x)− f(y))(g(x)− g(y))µxy, f, g ∈ F .

If f ∈ F we define the measure ΓG(f, f) on G by setting

ΓG(f, f)(x) =
X

y∼x

(f(x)− f(y))2µxy.

Let Y = {Yt}t≥0 be the continuous time random walk on G associated with E and the measure µ. When
the natural weights are given on G, Y is called the simple random walk on G. Y waits at x for an exponential
mean 1 random time and then moves to a neighbour y of x with probability proportional to µxy. We define
the transition density (heat kernel density) of Y with respect to µ by

qt(x, y) = Px(Yt = y)/µy. (3.1)

3.2 Inequalities

In this subsection, we will define various inequalities for later use. Here we state under the framework of
MMD spaces. Similar definition can be given for weighted graphs. For weighted graphs case, we will consider
only global structures, so, for example R ≥ 1, t ≥ 1 in the following inequalities.

Let β, β̄ ≥ 2 and

Ψ(s) = Ψβ̄,β(s) =
Ω

sβ̄ if s ≤ 1
sβ if s > 1.

(3.2)

Ψ(s) will give the space/time scaling on the space X. Generalization of this time scaling factor (for instance,
simply assuming (8.1)) may be possible, but we do not pursue it here.

(I) X satisfies volume doubling (VD) if there exists a constant c1 such that

V (x, 2R) ≤ c1V (x,R) for all x ∈ X, R ≥ 0. (VD)

(II) X satisfies the Poincaré inequality (PI(Ψ)) if there exists a constant c2 such that for any ball B =

B(x,R) ⊂ X and f ∈ F , Z

B
(f(x)− fB)2dµ(x) ≤ c2Ψ(R)

Z

B
dΓ(f, f). (PI(Ψ))

Here fB = µ(B)−1
R
B f(x)dµ(x).

(III) We say a function u is harmonic on a domain D if u ∈ F loc and E(u, g) = 0 for all g ∈ F with support
in D. Here u ∈ F loc if and only if for any relatively compact open set G, there exists a function w ∈ F
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Figure 1: Parabolic Harnack inequality

such that u = w µ-a.e. on G. See page 117 in [35] for the definition of E(u, g) for u ∈ F loc when (E ,F) is
a regular, strong local Dirichlet form. Functions in F are only defined up to quasi-everywhere equivalence;
we use a quasi-continuous modification of u. X satisfies the elliptic Harnack inequality (EHI) if there exists
a constant c3 such that, for any ball B(x,R), whenever u is a non-negative harmonic function on B(x,R)
then there is a quasi-continuous modification ũ of u that satisfies

sup
B(x,R/2)

ũ ≤ c3 inf
B(x,R/2)

ũ. (EHI)

Note that by a standard argument (see subsection 9.3) (EHI) implies that ũ is Hölder continuous.

(IV) Let Q = Q(x0, T,R) = (0, 4T )×B(x0, 2R) =: I ×B2R. Let u(t, x) : Q → R.

• We define ut = ∂u
∂t ∈ L2(dt×µ) as the derivative in the Schwartz’ distribution sense. That is, we define

ut to be the function f in L2(dt×µ) so that for any function g : Q → R such that g(x, ·) ∈ C∞
K (0, 4T )

for each x ∈ B(x0, 2R) and gt = ∂g
∂t ∈ L2(dt× µ), then

Z

Q
(f(x, t)g(x, t) + u(x, t)gt(x, t)) dt dµ(x) = 0.

• Let H(I → F∗) be the space of functions u ∈ L2(I → F∗) with the distributional time derivative
ut ∈ L2(I → F∗) equipped with the norm

≥ Z

I
ku(t, ·)k2F∗ + kut(t, ·)k2F∗dt

¥1/2
.

Here we identify L2(X,µ) with its own dual and denote the dual of F by F∗. So, F ⊂ L2(X,µ) ⊂ F∗
with continuous and dense embeddings.

Let F(I ×X) = L2(I → F) ∩H(I → F∗) be a Hilbert space with norm

kukF (I×X) =
≥ Z

I
ku(t, ·)k2F + kut(t, ·)k2F∗dt

¥1/2
.

• We define F loc(Q) to be the set of dt ⊗ dµ-measurable functions on Q such that for every relatively
compact open set D ⊂⊂ B2R and every open interval I 0 ⊂⊂ I, there exists a function u0 ∈ F(I ×X)
with u = u0 on I 0 ×D. We define

Fc(Q) := {u ∈ F(I ×X) : u(t, ·) has compact support in B2R for a.e. t ∈ I}.
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We say a function u(t, x) : Q → R is a solution of the heat equation in Q if u ∈ F loc(Q) and
Z

J

h Z
f(t, x)ut(t, x)µ(dx) + E(f(t, ·), u(t, ·))

i
dt = 0, ∀J ⊂⊂ I, ∀f ∈ Fc(Q). (3.3)

X satisfies the parabolic Harnack inequality (PHI(Ψ)), if there exists a constant c4 such that the following
holds. Let x0 ∈ X, R > 0, T = Ψ(R), and u = u(t, x) be a non-negative solution of the heat equation in
Q(x0, T,R). Write Q− = (T, 2T ) × B(x0, R) and Q+ = (3T, 4T ) × B(x0, R); then there exists ũ = ũ(t, x)
such that ũ(t, ·) is a quasi-continuous modification of u(t, ·) for each t and

sup
Q−

ũ ≤ c4 inf
Q+

ũ. (PHI(Ψ))

Given this (PHI(Ψ)), a standard oscillation argument implies that ũ is jointly continuous.

Remark. In the case of general MMD spaces we can only define harmonic functions up to quasi-
everywhere equivalence. This is why we needed to be careful in our definitions of (EHI) and (PHI(Ψ)).

(V) Let A, B be disjoint subsets of X. We define the effective resistance R(A,B) by

R(A,B)−1 = inf
nZ

X
dΓ(f, f) : f = 0 on A and f = 1 on B, f ∈ F

o
. (3.4)

X satisfies the condition (RES(Ψ)) if there exist constants c1, c2 such that for any x0 ∈ X, R ≥ 0,

c1
Ψ(R)

V (x0, R)
≤ R(B(x0, R), B(x0, 2R)c) ≤ c2

Ψ(R)
V (x0, R)

. (RES(Ψ))

(VI) X satisfies (CS(Ψ)) if there exist θ ∈ (0, 1] and constants c1, c2 such that the following holds. For every
x0 ∈ X, R > 0 there exists a cut-off function ϕ(= ϕx0,R) with the properties:
(a) ϕ(x) ≥ 1 for x ∈ B(x0, R/2).
(b) ϕ(x) = 0 for x ∈ B(x0, R)c.
(c) |ϕ(x)− ϕ(y)| ≤ c1(d(x, y)/R)θ for all x,y.
(d) For any ball B(x, s) with 0 < s ≤ R and f ∈ F ,

Z

B(x,s)
f2dΓ(ϕ,ϕ) ≤ c2(s/R)2θ

≥ Z

B(x,2s)
dΓ(f, f) + Ψ(s)−1

Z

B(x,2s)
f2dµ

¥
. (3.5)

Remarks. 1. We call (3.5) a weighted Sobolev inequality. It is clear that to prove (3.5) it is enough to
consider nonnegative f .
2. Suppose (CS(Ψ)) holds for X, but with (a) above replaced by

ϕ(x) ≥ 1 for x ∈ B(x0, δR),

for some δ < 1
2 . Then an easy covering argument (using (VD)) gives (CS(Ψ)) with δ = 1

2 .
3. Let λ > 1. Suppose that (CS(Ψ)) holds, except that instead of (3.5) we have

Z

B(x,s)
f2dΓ(ϕ,ϕ) ≤ c2(s/R)2θ

≥ Z

B(x,λs)
dΓ(f, f) + Ψ(s)−1

Z

B(x,λs)
f2dµ

¥
.

Then once again it is easy to obtain (CS(Ψ)) with λ = 2 by a covering argument.
4. Any operation on the cut-off function ϕ which reduces dΓ(ϕ,ϕ) while keeping properties (a), (b) and
(c) of (VI) will generate a new cut-off function which still satisfies (3.5). We can therefore assume that any
cut-off function ϕ satisfies the following: (a) 0 ≤ ϕ ≤ 1. (b) For each t ∈ (0, 1) the set {x : ϕ(x) > t} is
connected and contains B(x0, R/2). (c) Each connected component A of {x : ϕ(x) < t} intersects B(x0, R)c.
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5. Note that if (CS(Ψ)) holds for Ψ = Ψβ̄,β, then (CS(Ψβ̄0,β0)) holds if β0 ≥ β and β̄0 ≤ β̄.
(VII) For (t, r) ∈ (0,∞)× [0,∞), let

Λ1 = {(t, r) : t ≤ 1 ∨ r}, Λ2 = {(t, r) : t ≥ 1 ∨ r}, and gβ(r, t) = exp
≥
−

≥rβ

t

¥1/(β−1)¥
.

We say X satisfies (HK(Ψ)) if the heat kernel pt(x, y) on X exists and satisfies

c1gβ̄(c2d(x, y), t)
V (x, t1/β̄)

≤ pt(x, y) ≤
c3gβ̄(c4d(x, y), t)

V (x, t1/β̄)
, (3.6)

for x, y ∈ X and t ∈ (0,∞) with (t, d(x, y)) ∈ Λ1, and

c1gβ(c2d(x, y), t)
V (x, t1/β)

≤ pt(x, y) ≤
c3gβ(c4d(x, y), t)

V (x, t1/β)
, (3.7)

for x, y ∈ X and t ∈ (0,∞) with (t, d(x, y)) ∈ Λ2.
Let h(r) = Ψ(r)/r. It is easy to see that (HK(Ψ)) is equivalent to the following:

c1

V (x,Ψ−1(t))
exp

≥
− c2d(x, y)

h−1(t/d(x, y))

¥
≤ pt(x, y) ≤ c3

V (x,Ψ−1(t))
exp

≥
− c4d(x, y)

h−1(t/d(x, y))

¥
, (3.8)

for all x, y ∈ X and t ∈ (0,∞) where we let d(x, y)/h−1(t/d(x, y)) = 0 if d(x, y) = 0. We sometimes refer
the first inequality of (3.8) as (LHK(Ψ)) and the second inequality of (3.8) as (UHK(Ψ)).

Remark. To understand why the crossover takes the form it does, it is useful to consider the contribution
to pt(x, y) from various types of paths in X. Let r = d(x, y). First, if 0 < t ≤ 1 and r < 1 then the behaviour
is essentially local.

If r ≥ t then we are in the ‘large deviations’ regime: the main contribution to pt(x, y) is from those
paths of the Markov process Y which are within a distance O(t/r) of a geodesic from x to y. So, once the
length of the geodesic is given, only the local structure of X plays a role. Note that in this case the term
in the exponential is smaller than e−ct, so that the volume term V (x, t1/β̄)−1 could be absorbed into the
exponential with a suitable modification of the constants c2 and c4.

Finally, if t > 1 and r < t, then the paths which contribute to pt(x, y) fill out a much larger part of X:
those which lie in B(x, t1/β) if r < t1/β , and those which are within a distance O(t/rβ−1) of a geodesic from
x to y in the case when t1/β ≤ r ≤ t.

(VIII) We say X satisfies (VD)loc if (VD) holds for x ∈ X, 0 < R ≤ 1. Similarly we define (PI(β̄))loc,
(EHI)loc, (CS(β̄))loc and (PHI(β̄))loc by requiring the conditions only for 0 < R ≤ 1. For (HK(β̄))loc we
require the bounds only for t ∈ (0, 1) – so only (3.6) is involved. The value 1 here is for simplicity: each
of the local conditions implies an analogous local condition for 0 < R ≤ R0 for any (fixed) R0 > 1 – see
Section 2 of [46].

Finally, we introduce two local notions which do not include any scaling order.
(IX) (a) We call ϕ a cut-off function for A1 ⊂ A2 if ϕ = 1 on A1 and is zero on Ac

2.
(b) We say X satisfies (PI)loc if for each c1 > 0, there exists c2 > 0 such that

Z

B
(f(x)− fB)2dµ(x) ≤ c2

Z

B
dΓ(f, f)

for any ball B = B(x, c1) ⊂ X and f ∈ F .
(c) We say X satisfies (CC)loc if for every x0 ∈ X, there exists a cut-off function ϕ(= ϕx0) for B(x0, 1/2) ⊂
B(x0, 1) such that Z

B(x0,1)
dΓ(ϕ,ϕ) ≤ c3V (x0, 1),

where c3 > 0 is independent of x0 and ϕ.
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Remark. (CC) stands for ‘controlled cut-off’ functions. Clearly (PI(β̄))loc for any β̄ ≥ 2 implies (PI)loc

and (CS(β̄))loc for any β̄ > 0 implies (CC)loc.
(X) X satisfies the condition (E(Ψ)) if for any x0 ∈ X, R ≥ 0,

c1Ψ(R) ≤ Ex0 [τB(x0,R)] ≤ c2Ψ(R), (E(Ψ))

where τA = inf{t ≥ 0 : Yt /∈ A}, Yt is the strong Markov process associated to the Dirichlet form (E ,F),
and Ex0 denotes the expectation starting from the point x0. The first inequality in (E(Ψ)) is referred as
(E(Ψ)≥) and the second is referred as (E(Ψ)≤).

Remark. The conditions (VD), (EHI) and (PHI(Ψ)) for graphs are defined in exactly the same way as
for manifolds; see [9]. The definitions of (PI(Ψ)) and (RES(Ψ)) are also the same. For the bound (HK(Ψ))
we only require (3.7). The condition (CS(Ψ)) is also the same; the weighted Sobolev inequality (3.5) takes
the form

X

x∈BG(x1,s)

f(x)2ΓG(ϕ,ϕ)(x) ≤ c2(
s

R
)2θ

≥ X

x∈BG(x1,2s)

ΓG(f, f)(x) + Ψ(s)−1
X

x∈BG(x1,2s)

νxf(x)2
¥
.

It is easy to check that (PI)loc and (CC)loc hold for any weighted graph with controlled weights. In fact,
(PI(β̄))loc and (CS(β̄))loc hold for any choice of β̄ ≥ 2 on such graphs, since it is irrelevant to treat R < 1
for graphs.

We summarize the conditions we have introduced:

(VD) Volume doubling
(PI(Ψ)) Poincaré inequality
(EHI) Elliptic Harnack inequality
(PHI(Ψ)) Parabolic Harnack inequality
(RES(Ψ)) Resistance exponent
(CS(Ψ)) Cut-off Sobolev inequality
(CC) Controlled cut-off functions
(HK(Ψ)) Heat kernel estimates
(E(Ψ)) Walk dimension

When β̄ = β, we would write (...(β)) instead of (...(Ψ)), for instance (PI(β)) instead of (PI(Ψ)).

3.3 Main Theorems

Our main theorem in this section is the following.

Theorem 3.1 Suppose that X is either an infinite connected weighted graph with controlled weights, or a
MMD space. The following are equivalent:
(a) X satisfies (PHI(Ψ)).
(b) X satisfies (HK(Ψ)).
(c) X satisfies (VD), (PI(Ψ)) and (CS(Ψ)).
(d) X satisfies (VD), (EHI) and (RES(Ψ)).
(e) X satisfies (VD), (EHI) and (E(Ψ)).

Stability We now discuss the stability of (PHI(Ψ)). We will actually discuss two kinds of stability.

Definition 3.2 A property P is stable under bounded perturbation if whenever P holds for (E(1),F), then
it holds for (E(2),F), provided

c1E(1)(f, f) ≤ E(2)(f, f) ≤ c2E(1)(f, f), for all f ∈ F . (3.9)
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The following result is due to Le Jan ([64], Proposition 1.5.5(b)). A simple proof is given in [66] p. 389.

Lemma 3.3 Let X be a MMD space. Suppose (E(i),F), i = 1, 2 are strong local regular Dirichlet forms that
satisfy (3.9). Then the energy measures Γ(i) satisfy

c1dΓ(1)(f, f) ≤ dΓ(2)(f, f) ≤ c2dΓ(1)(f, f), for all f ∈ F .

It is immediate from Lemma 3.3 that the conditions PI(Ψ) and CS(Ψ) are stable under bounded
perturbations. So we deduce:

Theorem 3.4 Let X be a MMD space. Then (PHI(Ψ)) and (HK(Ψ)) are stable under bounded perturba-
tions.

The second kind of stability is stability under rough isometries.

Definition 3.5 For each i = 1, 2, let (Xi, di, µi) be either a metric measure space or a weighted graph. A
map ϕ : X1 → X2 is a rough isometry if there exist constants c1 > 0 and c2, c3 > 1 such that

X2 =
[

x∈X1

Bd2(ϕ(x), c1),

c−1
2 (d1(x, y)− c1) ≤ d2(ϕ(x),ϕ(y)) ≤ c2(d1(x, y) + c1),

and
c−1
3 µ1(Bd1(x, c1)) ≤ µ2(Bd2(ϕ(x), c1)) ≤ c3µ1(Bd1(x, c1)).

If there exists a rough isometry between two spaces they are said to be roughly isometric. (One can check
this is an equivalence relation.)

This concept was introduced by Kanai in [53, 52]. A rough isometry between X1 and X2 means that the
global structure of the two spaces is the same. However, to have stability of Harnack inequalities, we also
require some control over the local structure. In the case of graphs it is enough to have controlled weights,
but for metric measure spaces more regularity is needed. (In [53, 52] this local control was obtained by
geometrical assumptions on the manifolds).

The following theorem concerns the stability of (PHI(Ψ)) under rough isometries.

Theorem 3.6 Let Xi be either a MMD space satisfying (VD)loc and (PI)loc or a graph with controlled
weights, and suppose there exists a rough isometry ϕ : X1 → X2. Let Ψi(s) = sβ̄i1{s≤1} + sβ1{s≥1}.
(a) Suppose that X2 satisfies (PI(β̄2))loc. If X1 satisfies (VD), (CC)loc and (PI(Ψ1)) then X2 satisfies (VD)
and (PI(Ψ2)).
(b) Suppose that X2 satisfies (CS(β̄2))loc. If X1 satisfies (VD) and (CS(Ψ1)) then X2 satisfies (VD) and
(CS(Ψ2)).

The proof of thie theorem is given in [14] ([44] for the case of weighted graphs).
By this theorem together with Theorem 3.1, we see that (PHI(Ψ)) is stable under rough isometries,

given suitable local regularity of the two spaces.
Examples 1) It is known that the simple random walk on the S.G. graph (the left of Figure 2) satisfies
(HK(log 5/ log 2)) for t ≥ 1. The graph on the right of Figure 1 is an image of the S.G. graph by a
rough isometry. So the simple random walk on the graph also satisfies (HK(log 5/ log 2)), and thus satisfies
(PHI(log 5/ log 2)) for R ≥ 1.
2) Figure 3 is a 2-dimensional Riemannian manifold whose global structure is like that of the S.G.. This
can be constructed from the left of Figure 1 by changing each bond to the cylinder and putting projections
and dents locally. The diffusion corresponding to the Dirichlet form moves on the surface of the cylinders.
Using Theorem 3.6, one can show that any divergence operator L =

P2
i,j=1

∂
∂xi

(aij(x) ∂
∂xj

) on the manifold
which satisfies the uniform elliptic condition enjoys (HK(2)) for t ≤ 1 ∨ d(x, y) and (HK(log 5/ log 2)) for
t ≥ 1 ∨ d(x, y).
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Figure 2: S.G. graph and its image by a rough isometry

Figure 3: Fractal-like manifold

4 Proof of Theorem 3.1

In this section, we will give the proof of the key part of the theorem. The proof of (b) ⇔ (a) and (d) ⇒ (e)
will be given in Appendix 2 (Section 9). Recall that h(r) = Ψ(r)/r. We give some inequalities.

pt(x, y) ≤ C1

V (x,Ψ−1(t))
, ∀x, y ∈ X, t > 0. (DUHK(Ψ))

P x(τB(x,r) ≤ t) ≤ C2 exp
≥
− C3r

h−1(t/r)

¥
, ∀x ∈ X, r, t > 0. (ELD(Ψ))

pt(x, x) ≥ C4

V (x,Ψ−1(t))
, ∀x ∈ X, t > 0. (DLHK(Ψ))

pt(x, y) ≥ C5

V (x,Ψ−1(t))
, ∀x, y ∈ X, t > 0 with Ψ(d(x, y)) ≤ C6t. (NLHK(Ψ))

4.1 Proof of (e) ⇒ (b)

This is one of the most important part. Note that the existence of the heat kernel (especially the continuous
one) is highly non-trivial in this general setting. With extra work, we can prove the existence, but here we
will assume it to avoid the proof (which is already quite involved) more complicated.

For the proof, we first prove the following.

Proposition 4.1

(VD) + (DUHK(Ψ)) + (EHI) + (E(Ψ)) ⇒ (HK(Ψ)).

This proposition will be proved through several steps.
Step 1: Proof of (E(Ψ)) ⇒ (ELD(Ψ)). We first give the following key lemma due to Barlow-Bass.
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Lemma 4.2 Let {ξi} be non-negative random variables. Suppose there exist 0 < p < 1 and a > 0 such that

P (ξi ≤ t|σ(ξ1, · · · , ξi−1)) ≤ p + at, ∀t > 0.

Then,

log P (
nX

i=1

ξi ≤ t) ≤ 2
≥ant

p

¥1/2
− n log

1
p
.

Proof. We follow [7]. Let η be a random variable with distribution P (η ≤ t) = (p + at) ∧ 1. Then,

E(e−λξi |σ(ξ1, · · · , ξi−1)) ≤ Ee−λη = p +
Z (1−p)/a

0
e−λtadt ≤ p + aλ−1.

So,

P (
nX

i=1

ξi ≤ t) = P (e−λ
Pn

i=1 ξi ≥ e−λt) ≤ eλtEe−λ
Pn

i=1 ξi

≤ eλt(p + aλ−1)n ≤ pn exp(λt +
an

λp
).

The result follows on setting λ = (an/(pt))1/2. §

Proof of (E(Ψ)) ⇒ (ELD(Ψ)). We first prove that there exists 0 < c1 < 1 and c2 > 0 such that

P x(τB(x,r) ≤ s) ≤ 1− c1 + c2s/Ψ(r) for all x ∈ X, s ≥ 0. (4.1)

Indeed, by the Markov property, for each x ∈ X we have

ExτB(x,r) ≤ s + Ex[1{τB(x,r)>s}E
YsτB(x,r)] ≤ s + Ex[1{τB(x,r)>s}E

YsτB(Xs,2r)]. (4.2)

Applying (E(Ψ)) and using the doubling property of h, which is due to the definition of Ψ, we have

c3Ψ(r) ≤ s + c4Ψ(2r)P x(τB(x,r) > s) = s + c5Ψ(r)(1− P x(τB(x,r) ≤ s)). (4.3)

Rearranging gives (4.1).
Next, let l ≥ 1, b = r/l, and define stopping times σi, i ≥ 0 by

σ0 = 0, σi+1 = inf{t ≥ σi : d(Yσi , Yt) ≥ b}.

Let ξi = σi − σi−1, i ≥ 1. Let F t be the filtration generated by {Ys : s ≤ t} and let Gm = Fσm . We have
by (4.1)

P x(ξi+1 ≤ t|Gi) = P Yσi (τB(Yσi ,b)
≤ t) ≤ p + c2t/Ψ(b),

where 0 < p < 1. As d(Yσi , Yσi+1) = b, we have d(Y0, Yσl) ≤ r, so that σl =
Pl

i=1 ξi ≤ τB(Y0,r). So, by
Lemma 4.2,

log P x(τB(x,r) ≤ t) ≤ 2p−1/2(
c2lt

Ψ(r/l)
)1/2 − l log(1/p) = c6(

lt

Ψ(r/l)
)1/2 − c7l.

Now take l0 ∈ N the largest integer l that satisfies

c7l/2 > c6(
lt

Ψ(r/l)
)1/2. (4.4)

This is equivalent to r/l > h−1(c8t/r) where c8 = 4c2
6/c2

7. Note that if r ≤ h−1(c8t/r), then (ELD(Ψ))
clearly holds by taking c1 > 0 large, so we may assume that (4.4) holds for small l ∈ N. Then

l0 <
r

h−1(c8t/r)
≤ l0 + 1, and log P x(τB(x,r) ≤ t) ≤ −c7l0/2.
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We thus obtain (ELD(Ψ)). §
Step 2: Proof of (V D) + (DUHK(Ψ)) + (ELD(Ψ)) ⇒ (UHK(Ψ)). Fix x 6= y and t and let r :=
d(x, y), ≤ < r/6. For a ∈ X, set B≤(a) = {b ∈ X : d(a, b) < ≤}. Let µ̄x = µ|B≤(x), A1 = {z ∈ X : d(z, x) ≤
d(z, y)} and A2 = X −A1. Then

P µ̄x(Yt ∈ B≤(y)) = P µ̄x(Yt ∈ B≤(y), Y t
2
∈ A1)

+P µ̄x(Yt ∈ B≤(y), Y t
2
∈ A2) ≡ I1 + I2.

Now, letting τ := τB(x,r/2), we have

I2 ≤ P µ̄x(Yt ∈ B≤(y), τ <
t

2
) = Eµ̄x(1τ<t/2

Z

B≤(y)
pt−τ (Yτ , w)dµ(w))

≤ P µ̄x(τ < t/2) sup
z∈B(x,r/2)∪B≤(y)

pt/2(z, z)µ(B≤(y)).

This is OK!! For z ∈ B≤(x), by (ELD(Ψ)),

P z(τB(z,r/3) <
t

2
) ≤ c1 exp

≥
− c2r

h−1(t/r)

¥
.

Thus,
I2 ≤ c1

≥
sup

z∈B(x,r/2)∪B≤(y)
pt/2(z, z)

¥
µ(B≤(x))µ(B≤(y)) exp

≥
− c2r

h−1(t/r)

¥
.

For I1, by the symmetry of pt(x, y),

P µ̄x(Yt ∈ B≤(y), Y t
2
∈ A1) = P µ̄y(Yt ∈ B≤(x), Y t

2
∈ A1)

which is bounded in exactly the same way as I2,where x and y are changed. Adding the bounds for I1 and
I2,

P µ̄x(Yt ∈ B≤(y)) ≤ c1

≥
sup

z∈B(x,r/2)∪B(y,r/2)
pt/2(z, z)

¥
µ(B≤(x))µ(B≤(y)) exp

≥
− c2r

h−1(t/r)

¥
.

By (DUHK(Ψ)) and (9.1),

sup
z∈B(x,r/2)∪B(y,r/2)

pt/2(z, z) ≤ c3

V (x,Ψ−1(t))

≥r + Ψ−1(t)
Ψ−1(t)

¥α
.

If Ψ(r) ≤ t, this is bounded by c4V (x,Ψ−1(t))−1. If Ψ(r) > t, then, for each ≤ > 0, there exists c≤ > 0 such
that ≥r + Ψ−1(t)

Ψ−1(t)

¥α
exp

≥
− ≤r

h−1(t/r)

¥
≤ c≤.

This is due to the following fact; M = r/Ψ−1(t) is equivalent to h(r/M) = tM/r, so that M < r/h−1(t/r).
In any case, we obtain

P µ̄x(Yt ∈ B≤(y)) ≤ c5

V (x,Ψ−1(t))
µ(B≤(x))µ(B≤(y)) exp

≥
− c6r

h−1(t/r)

¥
.

Dividing both sides by µ(B≤(x)), µ(B≤(y)) and using the continuity of pt(x, y) gives (UHK(Ψ)). §

Step 3: Proof of (V D) + (ELD(Ψ)) ⇒ (DLHK(Ψ)). Using (ELD(Ψ)) we have that

P x(Yt /∈ B(x, r)) ≤ P (τB(x,r) ≤ t) ≤ c1 exp
≥
− c2r

h−1(t/r)

¥
.
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Hence by choosing r such that c3Ψ(r) < t < c4Ψ(r) for some c3, c4 > 0, we have

P x(Yt /∈ B(x, r)) ≤ c5 < 1.

Thus P x(Yt ∈ B(x, r)) ≥ 1− c5 > 0. By Cauchy-Schwarz,

(1− c5)2 ≤ P x(Yt ∈ B(x, r))2 = (
Z

B(x,r)
pt(x, z)dµ(z))2 ≤ V (x, r)p2t(x, x).

Now, using the lower bound of our choice of t and (VD), we obtain the result. §

Remark. By the same argument, we can obtain th following slightly stronger conclusion; Assume (V D)
and (ELD(Ψ)). Then, there exist c1, c2 > 0 such that

pB(x,R)
t (x, x) ≥ c1

V (x,Ψ−1(t))
, ∀x ∈ X,R > 0, t ∈ (0, c2Ψ(R)]. (4.5)

Step 4: Proof of (VD) + (DUHK(Ψ)) + (EHI) + (E(Ψ)) ⇒ (NLHK(Ψ)). We follow the arguments in
[40, 42]. Fix x ∈ X, t > 0 and set R := Ψ−1(t/ε) where ε > 0 will be chosen later. We can assume ε <c 2

where c2 is given in (4.5). Hence, by (4.5)

pB
t (x, x) ≥ c1

V (x,Ψ−1(t))
, (4.6)

where B := B(x,R). Set f(y) = ∂tpB
t (x, y). Applying Proposition 9.9 to pB

t , we have, for y ∈ B,

|f(y)| ≤ 2
t

q
pB

t/2(x, x)pB
t/2(y, y) ≤ 2

t

q
pt/2(x, x)pt/2(y, y).

By (DUHK(Ψ)), we have
pt/2(x, x) ≤ c1

V (x,Ψ−1(t))
,

and

pt/2(y, y) ≤ c1

V (y, Ψ−1(t))
≤ c1

V (x,Ψ−1(t))
V (x,Ψ−1(t))
V (y, Ψ−1(t))

≤ c1

V (x,Ψ−1(t))

≥
1 +

d(x, y)
Ψ−1(t)

¥α
≤ c1(1 + ε−α0)α

V (x,Ψ−1(t))
, ∀y ∈ B,

for some α,α0 > 0 where we used (9.1) and the definition of R and Ψ. Hence, by (VD), we have

|f(y)| ≤ c2(1 + ε−α0)α/2

tV (x,Ψ−1(t))
, ∀y ∈ B. (4.7)

Define u(y) = pB
t (x, y). Note that ∂tu = ∆Bu and the Green operator GB is a bounded operator in L2(B)

and GB = (−∆B)−1. Thus, u = −GB(∂tu) = −GBf . Let γ > αα0/2 and apply Proposition 9.6 with εγ+1

instead of ε. Then, there exists δ > 0 such that for any 0 < r < R,

OscB(x,δr)u ≤ 2(Ē(x, r) + εγ+1Ē(x,R)kfk∞.

By (E(Ψ)), we have Ē(x, r) ≤ c3Ψ(r) and Ē(x,R) ≤ c3Ψ(R). Estimating kfk∞ by (4.7), we obtain

OscB(x,δr)u ≤
Ψ(r) + εγ+1Ψ(R)

t
· c4(1 + ε−α0)α/2

V (x,Ψ−1(t))
.
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By definition of R, we have
εγ+1Ψ(R)

t
= εγ .

Choose r by the equation Ψ(r) = εγ+1Ψ(R), which implies, by definition of Ψ, r ≥ δ0R for some δ0 > 0.
Hence, we obtain

Oscy∈B(x,δδ0R)p
B
t (x, y) ≤ OscB(x,δr)u ≤

2c4εγ(1 + ε−α0)α/2

V (x,Ψ−1(t))
. (4.8)

By the choice of γ > 0, εγ(1 + ε−α0)α/2 → 0 as ε → 0. So, choosing ε small enough and combining (4.8)
with (4.6), we conclude that

pt(x, y) ≥ pB
t (x, y) ≥ c1/2

V (x,Ψ−1(t))
, ∀y ∈ B(x, δδ0R),

which proves (NLHK(Ψ)). §

Step 5: Proof of (VD) + (NLHK(Ψ)) ⇒ (LHK(Ψ)). First, since h(0) = 0, limt→∞ h(t) = ∞ and h is
increasing, for all t > 0 and x 6= y ∈ X, there exists ε0 := ε(t, d(x, y)) > 0 such that

c1t ≤ h(ε0)d(x, y) ≤ c2t. (4.9)

Since there is nothing to prove when Ψ(d(x, y)) ≤ C6t due to (NLHK(Ψ)), we will consider the case
Ψ(d(x, y)) > C6t, which means ε0 < c3d(x, y) for some c3 > 0. From now on, we take ε := ε(c∗t, d(x, y))
where c∗ ∈ (0, 1) will be chosen later. Since ε ≤ ε0, we still have ε <c 3d(x, y).

For c4 ≥ 2c3 ∨ 1, take N ∈ N such that

c3d(x, y)
ε

≤ N ≤ c4d(x, y)
ε

, (4.10)

and let {xi}N
i=0 be such that x0 = x, xN = y and d(xi, xi+1) ≤ ε for i = 0, 1, · · · , N − 1. Such a sequence

exists by the choice of N and by the fact that d is a geodesic metric. We then have

pt(x, y) =
Z

X
· · ·

Z

X
pt/N (x, z1)pt/N (z1, z2) · · · pt/N (zN−1, y)dµ(z1) · · · dµ(zN−1)

≥
Z

B(x1,ε)
· · ·

Z

B(xN−1,ε))
pt/N (x, z1)pt/N (z1, z2) · · · pt/N (zN−1, y)dµ(z1) · · · dµ(zN−1). (4.11)

Clearly d(zi, zi+1) ≤ 3ε. Now, by (4.9) applied to ε and by (4.10), we have

Ψ−1
≥c1c3c∗t

N

¥
≤ ε ≤ Ψ−1

≥c2c4c∗t

N

¥
.

By definition of Ψ, taking c∗ small, we have Ψ−1(c2c4c∗t/N) ≤ (C6/3)Ψ−1(t/N), so we conclude

Ψ−1
≥c5t

N

¥
≤ ε ≤ C6

3
Ψ−1

≥ t

N

¥
. (4.12)

Hence, by (NLHK(Ψ)), (VD) and (4.12), we have

pt/N (zi, zi+1) ≥
c6

V (zi,Ψ−1(t/N))
≥ c7

V (xi,Ψ−1(t/N))
≥ c8

V (xi, ε)
.

Therefore, it follows form (4.11)

pt(x, y) ≥ c8

V (x,Ψ−1(t/N))

N−1Y

i=1

c8

V (xi, ε)
· V (xi, ε) ≥

cN
8

V (x,Ψ−1(t/N))

≥ exp(−c9N)
V (x,Ψ−1(t))

≥ exp(−c10d(x, y)/ε)
V (x,Ψ−1(t))

.
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On the other hand, by (4.9) applied to ε, we have h−1(t/d(x, y)) ≤ c11ε, so that

d(x, y)
ε

≤ c11
d(x, y)

h−1(t/d(x, y))
.

We thus obtain (LHK(Ψ)). §

Combining Step 1 –5, the proof of Proposition 4.1 is completed.

Proposition 4.3

(VD) + (EHI) + (E(Ψ)) ⇒ (DUHK(Ψ)).

The proof is given for the case of weighted graphs in [41] and for the case of MMD spaces in [40]. Since the
proof is long, here we will additionally assume (PI(Ψ)) and prove the result. (PI(Ψ)) implies (FK(Ψ)) –
see subsection 8.1 for the definition, so we shall prove the following.

Proof of (VD) + (FK(Ψ)) + (E(Ψ)) ⇒ (DUHK(Ψ)). Fix x0 ∈ X and let 0 < r < ρ0 < ρ<R . If we
denote Bs := B(x0, s), then, as in [36] (12.6), we have

sup
x,y∈Br

pBR
t (x, y) ≤ sup

x,y∈Bρ0
p

Bρ0
t (x, y) + 2 sup

x∈Br

ϕBρ0 (x0, t/2) sup
t/2≤s≤t

sup
x,y∈Bρ

pBR
s (x, y),

where we denote ϕB(x, t) := Px(τB ≤ t). Using the fact (FK(Ψ)) ⇒ (UC(Ψ)) in Theorem 8.1,

sup
x,y∈Bρ0

p
Bρ0
t (x, y) ≤ sup

x,y∈Bρ

p
Bρ
t (x, y) ≤ c1

V (x0,Ψ−1(t))
∀t ≤ Ψ(ρ).

By (E(Ψ)) and (E(Ψ)) ⇒ (ELD(Ψ)) (Step 1 above), for x ∈ Br,

ϕBρ0 (x, t/2) ≤ ϕB(x,ρ0−r)(x, t/2) ≤ 1
4K

, ∀ρ0 − r ≥ MΨ−1(
t

2M
),

if M is large. This is the case if
ρ− r ≥ MΨ−1(t) (4.13)

and ρ0 is sufficiently close to ρ. Noting that the function s 7→ supx,y∈Br
pBR

s (x, y) is non-increasing, we
obtain

sup
x,y∈Br

pBR
t (x, y) ≤ c1

V (x0,Ψ−1(t))
+

1
2K

sup
t/2≤s≤t

sup
x,y∈Bρ

pBR
s (x, y) ≤ c1

V (x0,Ψ−1(t))
+

1
2K

sup
x,y∈Bρ

pBR
t/2 (x, y),

(4.14)
for all t ≤ Ψ(ρ).

Now, for a fixed t > 0, set tn := t/2n, n ≥ 0 and

rn := M
n−1X

i=0

Ψ−1(ti), n ≥ 1.

It follows by this and the definition of Ψ that

rn ≤ 2M

Z 2t

0
Ψ−1(s)

ds

s
=: I(t) < ∞.

Assume that R ≥ I(t) so that all the balls Bn := B(x0, rn) are in BR. Using the fact rn+1−rn = MΨ−1(tn),
which matches (4.13) and the fact tn ≤ Ψ(rn+1), we obtain from (4.14)

sup
x,y∈Bn

pBR
tn (x, y) ≤ c1

V (x0,Ψ−1(tn))
+

1
2K

sup
x,y∈Bn+1

pBR
tn+1

(x, y). (4.15)
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By (VD), we have

c1

V (x0,Ψ−1(tn))
≤ c1K

V (x0,Ψ−1(tn−1))
≤ · · · ≤ Kn c1

V (x0,Ψ−1(t0))
= Kn c1

V (x0,Ψ−1(t))
.

Thus, we have

sup
x,y∈Bn

pBR
tn (x, y) ≤ Kn c1

V (x0,Ψ−1(t))
+

1
2K

sup
x,y∈Bn+1

pBR
tn+1

(x, y).

By iteration, we obtain

sup
x,y∈B0

pBR
tn (x, y) ≤ c1

V (x0,Ψ−1(t))

n−1X

i=0

(1/2)i + (
1

2K
)n sup

x,y∈Bn

pBR
tn (x, y). (4.16)

Applying (FK(Ψ)), Theorem 8.1 and using (4.15),

sup
x,y∈Bn

pBR
tn (x, y) ≤ sup

x,y∈BR

pBR
tn (x, y) ≤ c1

V (x0,Ψ−1(tn))
≤ c1Kn

V (x0,Ψ−1(t))
,

since tn ≤ Ψ(R). Hence, limn→∞(2K)−n supx,y∈Bn
pBR

tn (x, y) = 0, and taking n →∞ in (4.16), we conclude

sup
x,y∈B0

pBR
t (x, y) ≤ 2c1

V (x0,Ψ−1(t))
.

Finally, taking R →∞ and noticing pBR
t → pt, we obtain the desired estimate. §

4.2 Proof of (c) ⇒ (d)
Lemma 4.4

(VD) + (PI(Ψ)) + (CS(Ψ)) ⇒ (RES(Ψ)).

Proof. We first prove the following. If X satisfy (VD) and (PI(Ψ)), then the following holds.

R(B(x0, R), B(x0, 2R)c) ≤ c1
Ψ(R)

V (x0, R)
, ∀x0 ∈ X,R ≥ 0. (4.17)

Let f be the function which attains the minimum on the right hand side of (3.4) when A = B(x0, R) and
B = B(x0, 2R)c. Let f =

R
B(x0,3R) fdµ/V (x0, 3R). Choose y0 so that d(x0, y0) = 5R/2. Then by (9.1) we

have V (y0, R/2) ≥ c2V (x0, R). Depending on whether f ≥ 1/2 or f < 1/2, |f − f | ≥ 1/2 on either B(x0, R)
or B(y0, R/2), and then using (PI(Ψ)) we have

V (x0, R) ≤ c3

Z

B(x0,3R)
(f − f)2dµ ≤ c4Ψ(R)

Z

B(x0,3R)
dΓ(f, f)

= c4Ψ(R)R(B(x0, R), B(x0, 2R)c)−1.

So (4.17) is proved.
We next prove the following. If X satisfy (VD) and (CS(Ψ)), then the following holds.

R(B(x0, R), B(x0, 2R)c) ≥ c5
Ψ(R)

V (x0, R)
, ∀x0 ∈ X,R ≥ 0. (4.18)

Let ϕ be a cut-off function for B(x0, R) given by (CS(Ψ)). Then taking f ≡ 1, I = B(x0, R) and
I∗ = B(x0, 2R) in (3.5) we obtain

R(B(x0, R/2), B(x0, R)c)−1 ≤
Z

I
dΓ(ϕ,ϕ) ≤ c6Ψ(R)−1

Z

I∗
dµ ≤ c7

V (x0, R)
Ψ(R)

,
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where (VD) was used in the last inequality. So (4.18) is proved. §

By Lemma 4.4, the rest is to show (VD) + (PI(Ψ)) + (CS(Ψ)) ⇒ (EHI). This is the highlight of this
section. Recall the Moser’s argument in subsection 2.4. The crucial loss for the case β 6= 2 is in using the
bound (2.6); one needs a cutoff function ϕ such that the final term in (2.7) can be controlled by a term of
order R−β. We shall now see how the (CS(Ψ)) enables one to do this. (Clearly, (CS(Ψ)) guarantees the
existence of ‘nice’ cut-off functions ϕ = ϕx,R that satisfies E(ϕ,ϕ) ≤ c1Ψ(R)−1V (x,R) for each x ∈ X and
R > 0.)

For x ∈ X, R > 0 let ϕ = ϕx,R be the cut-off function in (CS(Ψ)). We define the measure γ = γx,R by

dγ = dµ + Ψ(R)dΓ(ϕ,ϕ).

We remark that we do not know if the measure γ satisfies volume doubling. The first step in the argument
is to use (CS(Ψ)) to obtain a weighted Sobolev inequality. For any set J ⊂ X set

Js = {y : d(y, J) ≤ s}.

Proposition 4.5 Let s ≤ R and J ⊂ B(x0, R) be a finite union of balls of radius s. There exist κ > 1 and
c1 > 0 such that

≥
µ(J)−1

Z

J
|f |2κdγ

¥1/κ
≤ c1

≥
Ψ(R)µ(J)−1

Z

Js
dΓ(f, f) + (s/R)−2θµ(J)−1

Z

J
f2dγ

¥
.

The strategy of the proof is to show weighted Poincaré inequalities first and then prove the weighted Nash
inequality, which deduce the desired inequality. See subsection 9.8 for details.

The next result is the generalization of Lemma 4 of [69] to the case of a MMD space.

Lemma 4.6 Let D be a domain in X, let u be positive and harmonic in D, v = uk, where k ∈ R, k 6= 1
2 ,

and let η be supported in D. Suppose
R
D dΓ(η, η) < ∞, then

Z

D
η2dΓ(v, v) ≤

≥ 2k

2k − 1

¥2
Z

D
v2dΓ(η, η).

Proof. Let g ∈ F be supported by D. Then if u0 = Gh where h = 0 on D we have
Z

D
dΓ(gu0, u0) =

Z

X
dΓ(gu0, u0) =

Z

X
gu0h dµ = 0.

Hence, approximating u by functions of the form u0 we deduce that
Z

D
dΓ(gu, u) = 0.

Using this, and taking g = η2k2u2k−2, we conclude that
Z

D
η2 dΓ(v, v) =

Z

D
g dΓ(u, u) = −

Z

D
u dΓ(g, u). (4.19)

Using the Leibniz and chain rules, the right hand side is equal to

−2k

Z

D
ηv dΓ(η, v)− (2k − 2)

Z

D
η2dΓ(v, v).

Thus,
Z

D
η2dΓ(v, v) = − 2k

2k − 1

Z

D
ηv dΓ(v, η)

≤ 2|k|
|2k − 1|

≥ Z

D
η2dΓ(v, v)

¥1/2≥ Z

D
v2dΓ(η, η)

¥1/2
,
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where we used Cauchy-Schwarz. Dividing and squaring, we obtain the result. §

Let u be harmonic and nonnegative in B(x0, 4R). By looking at u + ε and letting ε ↓ 0 we may without
loss of generality suppose u is strictly positive. Note that, as for a general MMD space we do not initially
have any a priori continuity for u, we do not obtain a pointwise bound in (4.20).

Proposition 4.7 Let v be either u or u−1. There exists c1 such that if B(x, 2r) ⊂ B(x0, 4R) and 0 < q < 2,
then

ess supB(x,r/2)v
2q ≤ c1V (x, 2r)−1

Z

B(x,2r)

≥
Ψ(r)dΓ(vq, vq) + v2qdµ

¥
. (4.20)

Proof. Let ϕ0 be a (regularized) cut-off function given by (CS(Ψ)) for B(x, r). Let hn = 1 − 2−n,
0 ≤ n ≤ ∞, so that 0 = h0 < h∞ = 1. For k ≥ 0 set

ϕk(x) = (ϕ0(x)− hk)+, dγ0 = dµ + Ψ(r)dΓ(ϕ0,ϕ0).

Set Ak = {x : ϕ0(x) > hk}, and note that B(x, r/2) ⊂ An0 ⊂ A0 ⊂ B(x, r) for every n0. We therefore have,
writing V for V (x, r),

c2V ≤ µ(Ak) ≤ V, k ≥ 0.

The Hölder condition on ϕ0 given by (CS(Ψ)) implies that if x ∈ Ak+1 and y ∈ Ac
k, then d(x, y) ≥ c3r2−k/θ.

Set sk = 1
2c3r2−k/θ, and note that ϕk > c42−k on Ask

k+1. Let {Bi} be a cover of Ak+1 by balls of radius sk/2,
and let Jk+1 = ∪iBi. Write J 0k+1 = Jsk/2

k+1 , A0k+1 = Ask
k+1 and note that Ak+1 ⊂ Jk+1 ⊂ J 0k+1 ⊂ A0k+1.

From Proposition 4.5 with f = vp and s replaced by sk/2,
≥
V −1

Z

Ak+1

f2κdγ0

¥1/κ
≤

≥
V −1

Z

Jk+1

f2κdγ0

¥1/κ

≤ c5V
−1

h
Ψ(r)

Z

J 0k+1

dΓ(f, f) + (r/sk)2θ
Z

J 0k+1

f2dγ0

i

≤ c6V
−1

h
Ψ(r)

Z

A0k+1

dΓ(f, f) + 22k
Z

Ak

f2dγ0

i
. (4.21)

By Lemma 4.6, we have the ‘converse to the Poincaré inequality’ for f = vp, which controls the first term
in (4.21).

Ψ(r)
Z

A0k+1

dΓ(f, f) ≤ Ψ(r)(c72−k)−2
Z

A0k+1

ϕ2
kdΓ(f, f) ≤ c822kΨ(r)

Z

Ak

ϕ2
kdΓ(f, f)

≤ c922kΨ(r)
≥ 2p

2p− 1

¥2
Z

Ak

f2dΓ(ϕk,ϕk) ≤ c1022k
≥ 2p

2p− 1

¥2
Z

Ak

f2dγ0.

We therefore deduce that

≥
V −1

Z

Ak+1

f2κdγ0

¥1/κ
≤ c11

≥ 2p

2p− 1

¥2
22kV −1

Z

Ak

f2dγ0. (4.22)

We now make an argument similar to the first part of Moser’s argument [69] mentioned in subsection
2.4. Choose q0 > 0 such that infm∈Z |q0κm − 1

2 | ≥ c12 > 0. Suppose first that q0 = q0κ−i for some i. Let
pn = 2q0κn for n ≥ 0, and write

Ψk =
h
µ(Ak)−1

Z

Ak

vpkdγ0

i1/pk

.

Note that pk+1/2κ = pk/2. Applying (4.22) to f = vpk+1/(2κ) = vpk/2 we have

Ψpk+1/κ
k+1 =

≥
µ(Ak+1)−1

Z

Ak+1

vpk+1dγ0

¥1/κ
≤ c1322k

≥
µ(Ak)−1

Z

Ak

vpkdγ0

¥
= c1322kΨpk

k ,
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or
Ψk+1 ≤

≥
c1322k

¥1/pk

Ψk.

Hence for every m

log Ψm ≤ log Ψ0 +
mX

k=1

p−1
k log(c1322k). (4.23)

As the sum in (4.23) converges and ess supB(x,r/2)v ≤ lim supm→∞Ψm, we have

ess supB(x,r/2)v ≤ c14Ψ0 ≤ c15

≥
V −1

Z

B(x,r)
v2q0dγ0

¥1/(2q0)
.

Now let q ∈ (0, 2). We can take q0 = q0κ−i < q. Then by Hölder’s inequality, and Proposition 9.20 (d),

V −1
Z

B(x,r)
v2q0dγ0 ≤

≥
V −1

Z

B(x,r)
v2qdγ0

¥q0/q≥
V −1

Z

B(x,r)
dγ0

¥1−q0/q

≤ c16

≥
V −1

Z

B(x,r)
v2qdγ0

¥q0/q
.

Thus
ess supB(x,r/2)v

2q ≤ c17V
−1

Z

B(x,r)
v2qdγ0.

By Proposition 9.20 (a) with R = s = r and (VD) this implies

ess supB(x,r/2)v
2q ≤ c18V (x, 2r)−1

Z

B(x,2r)
(Ψ(r)dΓ(vq, vq) + v2qdµ).

§

Recall that ϕ is a cut-off function for B(x0, R) given by (CS(Ψ)). We define

Q(t) = {x : ϕ(x) > t}, 0 < t < 1,

and write Q(1) for the interior of {x : ϕ(x) ≥ 1}.

Corollary 4.8 Let 1 > s > t > 0. There exists ζ > 2 such that if 0 < q < 1
3 ,

ess supQ(s)v
2q ≤ c1(s− t)−ζV (x0, R)−1

Z

Q(t)
v2qdγ. (4.24)

Proof. By the maximum principle the essential supremum of v2q in Q(s) is equal to an essential supremum
around a point x0 ∈ ∂Q(s). Let η = 1

4(s− t), s0 = s− 2η. By the Hölder continuity of ϕ the sets Q(s) and
Q(s0)c are separated by a distance of at least ξ = c2R(s − t)1/θ, so that B(x0, ξ) ⊂ Q(s0). By Proposition
4.7,

ess supB(x0,ξ/4)v
2q ≤ c3Ψ(ξ)V (x0, ξ)−1

Z

B(x0,ξ)
dΓ(vq, vq) + c3V (x0, ξ)−1

Z

B(x0,ξ)
v2qdµ. (4.25)

Note that by (9.1) we have

V (x0, R)
V (x0, ξ)

≤ c4

≥d(x0, x0) + R

ξ

¥α
≤ c5(s− t)−α/θ. (4.26)

Using (4.25),

ess supQ(s)v
2q ≤ c6ξ

ΨV (x0, ξ)−1
Z

Q(s0)
dΓ(vq, vq) + c6V (x0, ξ)−1

Z

Q(s0)
v2qdµ.
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Let
ϕst = (s ∧ ϕ− t)+

and observe that
R
B dΓ(ϕst,ϕst) ≤

R
B dΓ(ϕ,ϕ) for any B. Since ϕst ≥ c7(s− t) on Q(s0), using Lemma 4.6,

we have the “converse to the Poincaré inequality” for vq;
Z

Q(s0)
dΓ(vq, vq) ≤ c7(s− t)−2

Z

Q(s0)
ϕ2

stdΓ(vq, vq) ≤ c7(s− t)−2
Z

Q(t)
ϕ2

stdΓ(vq, vq)

≤ c8(s− t)−2
Z

Q(t)
v2qdΓ(ϕst,ϕst) ≤ c9(s− t)−2Ψ(R)−1

Z

Q(t)
v2qdγ.

Thus, noting Ψ(ξ/R) = Ψ(c2(s− t)1/θ) ≤ c10,

ess supQ(s)v
2q ≤ c11Ψ(ξ/R)(s− t)−2V (x0, ξ)−1

Z

Q(t)
v2qdγ + c11V (x0, ξ)−1

Z

Q(t)
v2qdµ

≤ c12V (x0, ξ)−1(s− t)−2
Z

Q(t)
v2qdγ

≤ c13V (x0, R)−1(s− t)−2−α/θ
Z

Q(t)
v2qdγ,

where we used (4.26) in the last inequality. So taking ζ1 = 2 + α/θ we obtain (4.24). §
Now our goal is to deduce the elliptic Harnack inequality. The following corresponds to the second part

of Moser’s arguments.
Let w = log u, and write w = V (x0, R)−1

R
B(x0,R) w dµ.

Proposition 4.9 (a) There exists c1 such that
Z

B(x0,2R)
dΓ(w,w) ≤ c1

V (x0, R)
Ψ(R)

.

(b) Let 1 ≥ s > t > 0. Then Z

{|w−w|>A}∩Q(s)
dγ ≤ c2

V (x0, R)
A2

.

Proof. Again, this is essentially Moser’s proof. Let ϕ1(x) be a cut-off function given by (CS(Ψ)) for the
ball B∗ := B(x0, 4R). So Z

B(x0,2R)
dΓ(w,w) ≤ c

Z

B∗
ϕ2

1dΓ(w,w).

Applying (4.19) with η = ϕ1, v = w, g = ϕ2
1/u2 and D = B∗, we have

Z

B∗
ϕ2

1dΓ(w,w) = −
Z

B∗
udΓ(ϕ2

1/u2, u).

Using the Leibniz and chain rules, the right hand side is equal to

−2
Z

B∗
ϕ1dΓ(ϕ1, w) + 2

Z

B∗
ϕ2

1dΓ(w,w).

Thus, Z

B∗
ϕ2

1dΓ(w,w) = 2
Z

B∗
ϕ1dΓ(ϕ1, w) ≤ 2

≥ Z

B∗
dΓ(ϕ1,ϕ1)

¥1/2≥ Z

B∗
ϕ2

1dΓ(w,w)
¥1/2

,
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where we used Cauchy-Schwarz. Dividing and squaring,
Z

B∗
ϕ2

1dΓ(w,w) ≤ 4
Z

B∗
dΓ(ϕ1,ϕ1).

Finally, using (CS(Ψ)) in B∗ with f ∈ F such that f |B(x0,8R) ≡ 1 (since (E ,F) is a regular Dirichlet form,
such an f exists) and (VD) we deduce that

Z

B∗
dΓ(ϕ1,ϕ1) ≤ cΨ(R)−1V (x0, R).

(b) By Chebyshev’s inequality, Proposition 9.20 (b) and (a)

A2
Z

{|w−w|>A}∩Q(s)
dγ ≤

Z

{|w−w|>A}∩Q(s)
|w − w|2dγ

≤
Z

Q(s)
|w − w|2dγ ≤

Z

B(x0,R)
|w − w|2dγ

≤ c5Ψ(R)
Z

B(x0,2R)
dΓ(w,w) ≤ c6V (x0, R).

§
In order to get the Harnack inequality the argument in [68] required a generalization of the John-

Nirenberg inequality with a complicated proof. Bombieri [22] found a way to avoid such an argument for
elliptic second order differential equations. Moser (Lemma 3 in [67]) carried the idea over to the parabolic
case and Bombieri and Giusti (Theorem 4 in [23]) obtained the inequality in an abstract setting. (See also
Lemma 2.2.6 in [72].) This argument can be applied to our setting (with suitable modifications) and we can
show that Corollary 4.8 and Proposition 4.9 (b) give

ess supB(x0,R/2) log u ≤ c1. (4.27)

(For the sake of completeness, we will give the proof of (4.27) in subsection 9.9.) Let v = u−1. The same
argument implies ess supB(x0,R/2) log v ≤ c1, or ess infB(x0,R/2) log u ≥ −c1. Combining we deduce

e−c1 ≤ ess infB(x0,R/2)u ≤ ess supB(x0,R/2)u ≤ ec1 .

We thus obtain the following.

Theorem 4.10 There exists c1 such that if u is nonnegative and harmonic in B(x0, 4R), then

ess supB(x0,R/2)u ≤ c1ess infB(x0,R/2)u.

Proof of (c) ⇒ (d). As we mentioned in the beginning of this section, it is enough to show (VD) +
(PI(Ψ)) + (CS(Ψ)) ⇒ (EHI). But given Theorem 4.10, (EHI) can be proved as in subsection 9.3 §

4.3 Proof of (b) ⇒ (c)

In this subsection, we will use the equivalence (a) ⇔ (b) which is proved in Appendix 2 (Section 9).
Assuming (b) or equivalently (a), (VD) and (PI(Ψ)) hold by standard arguments (which are partly

discussed in subsection 9.7). So, we will prove (PHI(Ψ)) (equivalently (HK(Ψ))) ⇒ (CS(Ψ)).
Let D = B(x0, R − ε) where ε < R/10, and λ > 0. Let Y be the process associated with the Dirichlet

form (E ,F). Let GD
λ be the resolvent associated with the process Y killed on exiting D; that is,

GD
λ f(x) = Ex

Z τD

0
e−λtf(Yt)dt,
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for bounded measurable f , where τD = inf{t : Yt ∈ X −D}. Let pD
t (·, ·) be the heat kernel of Y killed on

exiting D. Then the Green kernel of GD
λ is given by

gD
λ (x, y) =

Z ∞

0
e−λtpD

t (x, y)dt.

We use the Green kernel to build a cut-off function ϕ.

Lemma 4.11 Let x0 ∈ X. Then there exists δ > 0 such that if λ = c0Ψ(R)−1

gD
λ (x0, y) ≤ C1

Ψ(R)
V (x0, R)

, y ∈ B(x0, δR)c,

gD
λ (x0, y) ≥ C2

Ψ(R)
V (x0, R)

, y ∈ B(x0, δR).

Proof. This follows easily from (HK(Ψ)) by integration. §

Lemma 4.12 Let x0 and R be as above, and let x, y ∈ B(x0, δR)c. Then there exists θ > 0 such that

|gD
λ (x0, x)− gD

λ (x0, y)| ≤ c1

≥d(x, y)
R

¥θ
sup

B(x0,δR)c
gD
λ (x0, .). (4.28)

Proof. The Hölder continuity of pD
t follows from (PHI(Ψ)) by a standard argument. Integrating we obtain

(4.28). §
Fix x0 ∈ X and let B0 = B(x0, δR), B = B(x0, R), D = B(x0, R−ε) where ε < R/10. Let λ = c0Ψ(R)−1

and define
ϕ(x) = 1 ∧ (cΨ(R)−1GD

λ 1B0(x)),

where c is chosen so that ϕ(x) = 1 on x ∈ B0. Using Lemmas 4.11 and 4.12, it is easy to check that ϕ is a
cut-off function for B0 ⊂ B that satisfies subsection 3.2 (VI) (a)–(c). To complete the proof of (CS(Ψ)), we
need to establish (3.5).

Proposition 4.13 Let x1 ∈ X and f ∈ F . Let δ be defined by Lemma 4.11 and let I = B(x1, δs) with
0 < s ≤ R and I∗ = B(x1, s). There exist c1, c2 > 0 such that for all f ∈ F ,

Z

I
f2dΓ(ϕ,ϕ) ≤ c1(s/R)2θ

≥ Z

I∗
dΓ(f, f) + c2Ψ(s)−1

Z

I∗
f2dµ

¥
. (4.29)

Proof. Case 1. We first consider the case where s = R and x1 = x0. Let

FD = {f ∈ F : ef = 0 q.e. on X −D}.

Set
Eλ(f, g) = E(f, g) + λ

Z
fg dµ.

Let v = GD
λ 1B0 . Note that

v(x) ≤
Z

B0
gD(x, y)dµ(y) ≤ Ex[τD] ≤ cΨ(R), x ∈ D, (4.30)

by the fact (VD) + (DUHK(Ψ)) ⇒ (E(Ψ)≤) – see subsection 9.2. By [35] Theorem 4.4.1, v ∈ FD and is
quasi-continuous. Further, since Y is continuous, v = 0 on D

c. Let f ∈ F . Then
Z

B
f2dΓ(v, v) ≤

Z

X
f2dΓ(v, v) =

Z

X
dΓ(f2v, v)−

Z

X
2fvdΓ(f, v).
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Since v ∈ FD we have f2v ∈ FD, so by [35] Theorem 4.4.1,
Z

X
dΓ(f2v, v) = E(f2v,GD

λ 1B0) ≤ Eλ(f2v,GD
λ 1B0) =

Z

X
f2v1B0dµ ≤ cΨ(R)

Z

B0
f2dµ,

where we used (4.30) in the last inequality. Using Cauchy-Schwarz and (4.30), we obtain
ØØØ
Z

X
2fvdΓ(f, v)

ØØØ ≤ c
≥ Z

X
v2dΓ(f, f)

¥1/2≥ Z

X
f2dΓ(v, v)

¥1/2

≤ cΨ(R)
≥ Z

B
dΓ(f, f)

¥1/2≥ Z

X
f2dΓ(v, v)

¥1/2
.

So, writing H =
R
X f2dΓ(v, v), J =

R
B dΓ(f, f), K =

R
B f2dµ, we have

H ≤ cΨ(R)K + cΨ(R)J1/2H1/2,

from which it follows that H ≤ cΨ(R)K + cΨ(R)2J . From this, (4.29) with s = R follows easily.

Case 2. Define
Q(b) = Q(x0, b) = {y : gD

λ (x0, y) > b}.

and let
h = C2Ψ(R)/(2V (x0, R)),

where C2 is as in Lemma 4.11. Note that by Lemma 4.11 and the fact gD
λ (x0, y) = 0 for y /∈ D,

B(x0, δR) ⊂ Q(2h) ⊂ Q(h) ⊂ B(x0, R).

In Case 2, we will consider the situation that either

I∗ ⊂ Q(2h) (4.31)

or
I∗ ∩B(x0, δR/2) = ∅ (4.32)

hold. Since ϕ ≡ 1 on Q(2h), (4.29) is clear if (4.31) holds. Thus, we consider when (4.32) holds. Let ψs(x) =
1∧(cΨ(s)−1GB(x0,s−≤)

λ 1I(x)) be a cut-off function for I ⊂ I∗ given by Case 1. Let ϕ0(x) = Ψ(R)−1GD
λ 1B00(x)

where B00 = B(x0, δR/2) and ϕ1(x) = ϕ0(x)−miny∈I∗ ϕ(y), then by Lemma 4.12,

ϕ1(x) ≤ c(s/R)θ = L, x ∈ I∗.

Let

A =
Z

I
f2dΓ(ϕ,ϕ),

D =
Z

I∗
dΓ(f, f) + Ψ(s)−1

Z

I∗
f2,

F =
Z

I∗
f2ψ2

sdΓ(ϕ1,ϕ1).

Now as
dΓ(f2ψ2

sϕ,ϕ) ≤ dΓ(f2ψ2
sϕ1,ϕ0) = f2ψ2

sdΓ(ϕ1,ϕ0) + ϕ1dΓ(f2ψ2
s ,ϕ0),

we have
A ≤ F =

Z

I∗
f2ψ2

sdΓ(ϕ1,ϕ0) =
Z

I∗
dΓ(f2ψ2

sϕ1,ϕ0)−
Z

I∗
ϕ1dΓ(f2ψ2

s ,ϕ0). (4.33)

29



For the first term in (4.33)
Z

I∗
dΓ(f2ψ2

sϕ1,ϕ0) =
Z

X
dΓ(f2ψ2

sϕ1,ϕ0)

= Eλ(f2ψ2
sϕ1,Ψ(R)−1GD

λ 1B00)− λ

Z

X
f2ψ2

sϕ1ϕ0dµ

≤ Eλ(f2ψ2
sϕ1,Ψ(R)−1GD

λ 1B00) = Ψ(R)−1
Z

B00
f2ψ2

sϕ1dµ = 0.

Here we used the fact that ϕ1 ≥ 0 on I∗ and that the support of ψs is in I∗, hence outside B00 (due to
(4.32)).

The final term in (4.33) is handled, using the Leibniz and chain rules and Cauchy-Schwarz, as
ØØØ
Z

I∗
ϕ1dΓ(f2ψ2

s ,ϕ0)
ØØØ ≤ 2

ØØØ
Z

I∗
ϕ1fψ2

sdΓ(f,ϕ0)
ØØØ + 2

ØØØ
Z

I∗
ϕ1f

2ψsdΓ(ψs,ϕ0)
ØØØ

≤ c
n≥ Z

I∗
ψ2

sdΓ(f, f)
¥1/2

+
≥ Z

I∗
f2dΓ(ψs,ψs)

¥1/2o≥ Z

I∗
ϕ2

1f
2ψ2

sdΓ(ϕ0,ϕ0)
¥1/2

≤ cD1/2LF 1/2,

where we used Case 1 in the final line. Thus we obtain A ≤ F ≤ cDL2 so that (4.29) holds.

Case 3. We finally consider the general case. When either (4.31) or (4.32) holds, the result is already
proved in Case 2. So assume that neither of them hold. Then I∗ must intersect both B(x0, δR/2) and
B(x0, δR)c, so s ≥ δR/4. We use Lemma 9.2 to cover I with balls Bi = B(xi, c1R), where c1 ∈ (0, δ/4) has
been chosen small enough so that each B∗

i := B(xi, c1R/δ) satisfies at least one of (4.31) or (4.32). We can
then apply (4.29) with I replaced by each ball Bi: writing s0 = c1R we have

Z

Bi

f2dΓ(ϕ,ϕ) ≤ c2(s0/R)2θ
≥ Z

B∗
i

dΓ(f, f) + Ψ(s0)−1
Z

B∗
i

f2dµ
¥
.

We then sum over i. Since no point of I∗ is in more than L0 (not depending on x0 or R) of the B∗
i , and

s/c1 ≤ s0 ≤ s, we obtain (4.29) for I. §

5 Strongly recurrent case

5.1 Framework and the main theorem

Let (X, d, µ, E) be the MMD space or the weighted graph. It is called a resistance form if F ⊂ C(X) and

sup
n |u(p)− u(q)|2

E(u, u)
: u ∈ F , E(u, u) > 0

o
< ∞, ∀p, q ∈ X. (5.1)

Define R(p, q) = (LHS of (5.1)) if p 6= q and R(p, p) = 0. One can prove that R is a metric and it is called
a resistance metric. By (5.1), the following key inequality holds.

|f(x)− f(y)|2 ≤ R(x, y)E(f, f), ∀f ∈ F . (5.2)

The next lemma shows that R(p, q) is the effective resistance between p and q.

Lemma 5.1
R(p, q) =

≥
inf{E(f, f) : f(p) = 1, f(q) = 0, f ∈ F}

¥−1
. (5.3)
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Proof. By linear transform f(x) = au(x) + b, we can take f(x) = 1, f(y) = 0 if u is not const. So,

R(x, y) = sup
n |u(x)− u(y)|2

E(u, u)
: u ∈ F , E(u, u) > 0

o
= sup

n 1
E(f, f)

: f ∈ F , f(x) = 1, f(y) = 0
o

=
≥

inf{E(f, f) : f(x) = 1, f(y) = 0, f ∈ F}
¥−1

,

and the conclusion holds. §
Examples. Any weighted graphs are resistance forms. For the Dirichlet form on Rd that corresponds to

Brownian motion, it is a resistance form only when d = 1. Dirichlet forms on the Sierpinski gasket, nested
fractals are resistance forms. Dirichlet forms on the 2-dimensional Sierpinski carpet are resistance forms.

We now give several inequalities.

(I) We say X satisfies a volume growth condition (V G(Ψ−)) if there exist α < β ∨ β̄ and C > 0 such that
the following holds,

V (x, r) ≤ C
≥r

s

¥α
V (x, s) ∀x ∈ X, ∀r ≥ s > 0. (V G(Ψ−))

(II) We say X satisfies a resistance upper and lower bound of order Ψ (RU(Ψ)), (RL(Ψ)) if there exist
C1, C2 > 0 such that for all x, y ∈ X,

R(x, y) ≤ C1
Ψ(d(x, y))

µ(B(x, d(x, y)))
, (RU(Ψ))

C2
Ψ(d(x, y))

µ(B(x, d(x, y)))
≤ R(x, y). (RL(Ψ))

Theorem 5.2 Let (X, d, µ, E) be a resistance form on a MMD space or a weighted graph. Assume (V G(Ψ−)).
Then,

(HK(Ψ)) ⇔ (RU(Ψ)) + (RL(Ψ)) ⇔ (RL(Ψ)) + (PI(Ψ)). (5.4)

When (5.4) holds, it is strongly recurrent in the following sense. There exists p1 > 0 such that

P x(σy < τB(x,2r)) ≥ p1, ∀x ∈ X, r > 0, y ∈ B(x, r), (5.5)

where σA = inf{t ≥ 0 : Xt ∈ A} and τA = inf{t ≥ 0 : Xt /∈ A}.
When X is a tree, we have a simpler equivalence condition as follows.

Corollary 5.3 Let (X,µ) be a weighted graph with c1 ≤ µxy ≤ c2 for all x ∼ y. Assume that X is a tree.
Then,

(V G(β−)) + (HK(β)) ⇔ [V (x, d(x, y)) ≥ d(x, y)β−1 ∀x, y].

5.2 Proof of Theorem 5.2: (RU(Ψ)) + (RL(Ψ)) ⇒ (HK(Ψ))

The flowchart of the proof is similar to that of Proposition 4.1.
First, note that the following holds by (V G(Ψ−)); there exists c > 0 such that

Ψ(s)
V (x, s)

≤ c
Ψ(r)

V (x, r)
∀r > s > 0. (5.6)

Indeed, by (V G(Ψ−)), we have

V (x, r)
V (x, s)

≤ c
≥r

s

¥α
< c

≥r

s

¥β∧β̄
≤ c

Ψ(r)
Ψ(s)

, ∀r > s > 0,
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which implies (5.6).
We now give the proof of (RU(Ψ)) + (RL(Ψ)) ⇒ (HK(Ψ)) step by step.

Step A: Proof of (RU(Ψ)) ⇒ (DUHK(Ψ)). Let ft(y) = pt(x, y) and

ϕ(t) := ||ft||22 = p2t(x, x) = f2t(x). (5.7)

Since
R
B(x,r) ftdµ ≤ 1 for r > 0, there exists y = y(t, r) ∈ B(x, r) with ft(y) ≤ V (x, r)−1. Using (5.2),

1
2
ft(x)2 ≤ ft(y)2 + |ft(x)− ft(y)|2 ≤ 1

V (x, r)2
+ E(ft, ft)R(x, y).

Since R(x, y) < c1Ψ(r)/V (x, r), which is due to (RU(Ψ)), it follows that

c1Ψ(r)
V (x, r)

E(ft, ft) ≥
1
2
ϕ(t/2)2 − 1

V (x, r)2
.

Hence

ϕ0(t) = −2E(ft, ft) ≤
2V (x, r)−1 − ϕ(t/2)2V (x, r)

c1Ψ(r)
. (5.8)

Noting that −ϕ(t/2)2 ≤ −ϕ(t)2, which is due to the fact ϕ0(t) = −2E(ft, ft) ≤ 0, we integrate (5.8) over
[t, 2t]. Then,

−ϕ(t) ≤ ϕ(2t)− ϕ(t) ≤ 2t

c1Ψ(r)V (x, r)
− tϕ(t)2V (x, r)

c1Ψ(r)
.

Rearranging this, we have

tϕ(t)2V (x, r)2 ≤ 2t + c1Ψ(r)V (x, r)ϕ(t) ≤ (4t) ∨ (2c1Ψ(r)V (x, r)ϕ(t)).

Thus, we obtain ϕ(t) ≤ (2/V (x, r)) ∨ (2c1Ψ(r)/(tV (x, r))). Taking r = Ψ−1(t) and using the doubling
properties of Ψ and V , we obtain (DUHK(Ψ)). §

Step B: Proof of (V G(Ψ−)) + (RU(Ψ)) + (RL(Ψ)) ⇒ (E(Ψ)). In order to prove this, we first give a
key lemma.

Lemma 5.4 Assume (V G(Ψ−)), (RU(Ψ)) and (RL(Ψ)). Then, the following holds.

c1Ψ(r)
V (x, r)

≤ R(x,B(x, r)c) ≤ c2Ψ(r)
V (x, r)

for all r > 0, x ∈ X. (5.9)

Proof. First, take y, z ∈ B(x, r) with d(y, z) = λr, λ ≤ 1. We have by (5.2) and (RU(Ψ)),

|f(y)− f(z)|2 ≤ R(y, z)E(f, f) ≤ c2Ψ(λr)E(f, f)
V (x,λr)

, for all f ∈ F . (5.10)

Let z ∈ X be such that c∗r ≤ d(x, z) ≤ r for some c∗ < 1. If hz is the harmonic function on X \ {x, z}
with hz(z) = 0, hz(x) = 1 then E(hz, hz) = R(x, z)−1. Applying (5.6), (5.10) and (RL(Ψ)), we have, if
d(y, z) = λr,

|hz(y)|2 = |hz(y)− hz(z)|2 ≤ c2Ψ(λr)
V (x,λr)R(x, z)

≤ c3Ψ(λr)V (x, c∗r)
V (x,λr)Ψ(c∗r)

.

So there exists a constant λ1 such that d(y, z) ≤ λ1r implies that hz(y) ≤ 1
2 .

Now use (VD) to cover B(x, r) \B(x, c∗r) by balls B(zi,λ1r), 1 ≤ i ≤ M , with c∗r ≤ d(x, zi) ≤ r. Here,
M depends only on the volume doubling constant. Let g = minhzi , and h = 2(g − 1

2)+ · 1B(x,r). Then
h(x) = 1, and h = 0 on B(x, c∗r)c, so that

R(x,B(x, r)c)−1 ≤ E(h, h) ≤ 4
X

i

E(hzi , hzi) ≤ 4M(min
i

R(x, zi))−1 ≤ c4V (x, c∗r)
Ψ(c∗r)

≤ c5V (x, r)
Ψ(r)

.

32



We thus obtain the first inequality of (5.9). The second inequality of (5.9) is clear from (RU(Ψ)), because
R(x,B(x, r)c) ≤ R(x, y) for all y ∈ ∂B(x, r). §

Proof of (E(Ψ)). Denote B := B(x0, r) and let (EB,FB) be the part of the Dirichlet form in the sense
of [35] section 4.4. By Theorem 4.4.3 of [35], it is a regular Dirichlet form on L2(B,µ) with FB ⊂ {f ∈
F : f(x) = 0 on x ∈ Bc}. Let XB

t be the corresponding Hunt process, which is a process with the killing
condition outside B. Using (5.2) and (RU(Ψ)), we have

sup
x∈B

|f(x)|2 ≤ c1Ψ(r)
V (x0, r)

E(f, f) for all f ∈ FB. (5.11)

Thus, (EB,FB) is a transient Dirichlet form so that the extended Dirichlet space (EB, (FB)e) is a Hilbert
space (Theorem 1.5.3 in [35]). Using (5.11) and the Riesz representation theorem, there exists a Green
kernel gB(·, ·) with the reproducing property; E(gB(x, ·), f) = f(x) for all f ∈ FB. Using the reproducing
property and the irreducibility of the form, gB(x, y) = gB(y, x) and gB(x, x) > 0 for all x, y ∈ B. Set
px(y) := gB(x, y)/gB(x, x). Then px is an equilibrium potential for R(x,Bc) and we have

R(x,Bc)−1 = E(px, px) = gB(x, x)−1. (5.12)

Since px(y) ≤ 1 for all y ∈ X,

gB(x, y) ≤ gB(x, x) for all x, y ∈ X. (5.13)

On the other hand, by the definition of the resistance,

R(x,Bc) ≤ R(x, y) for all x, y ∈ X, y ∈ Bc,

so that gB(x, x) ≤ c1Ψ(r)/V (x, r). Now, since

Ex0 [τB(x0,r)] =
Z

B
gB(x0, y)dµ(y), (5.14)

we have
Ex0 [τB(x0,r)] ≤

c1Ψ(r)
V (x0, r)

V (x0, r) ≤ c1Ψ(r),

where we use (5.13). We thus obtain the second inequality of (E(Ψ)).
Next, by (5.2) and the reproducing property of gB, we have for y ∈ B,

|gB(x0, x0)− gB(x0, y)|2 ≤ E(gB, gB)R(x0, y) = gB(x0, x0)R(x0, y).

Thus, by (5.12) we have

|1− px0(y)|2 ≤ R(x0, y)
R(x0, Bc)

.

Now using Lemma 5.4, we see that there exists δ > 0 such that

px0(y) =
gB(x0, y)
gB(x0, x0)

≥ 1/2 for all y ∈ B(x0, δr). (5.15)

On the other hand, by (5.12) and Lemma 5.4, we have gB(x0, x0) = R(x0, Bc) ≥ c2Ψ(r)/V (x0, r). Combining
this with (5.15), we have

gB(x0, y) ≥ c3Ψ(r)
V (x0, r)

, for all y ∈ B(x0, δr).
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Applying this with (5.14) and (VD), we have

Ex0 [τB(x0,r)] =
Z

B
gB(x0, y)dµ(y) ≥ c3Ψ(r)

V (x0, r)
V (x0, δr) ≥ c4Ψ(r),

where c4 > 0 depends on δ. We thus obtain the first inequality of (E(Ψ)). §
Remark. (5.15) implies immediately (5.5). This implies (EHI) by Lemma 1.6 in [6]. Thus, (RU(Ψ)) +
(RL(Ψ)) ⇒ (HK(Ψ)) is proved by Proposition 4.1 and Proposition 4.3 (Step A above was not needed).
But we do not choose this way because several steps of the current proof are much simpler than those of
Proposition 4.1 and Proposition 4.3, thanks to (5.2).

Step C: Proof of (V D) + (DUHK(Ψ)) + (E(Ψ)) ⇒ (UHK(Ψ)). This step is the same as Step 1 and
Step 2 in the proof of Proposition 4.1.

Step D: Proof of (V D) + (ELD(Ψ)) ⇒ (DLHK(Ψ)). This step is the same as Step 3 in the proof of
Proposition 4.1.

Step E: Proof of (V G(Ψ−)) + (RU(Ψ)) + (DLHK(Ψ)) ⇒ (NLHK(Ψ)).
First, note that (RU(Ψ)) implies (DUHK(Ψ)) as shown before. Note also that, since pt(x, x) =

kpt/2(·, x)k22, we have ∂tpt(x, x) = 2(∆pt/2(·, x), pt/2(·, x)) = −2E(pt/2(·, x), pt/2(·, x)). Thus, using (5.2)
and Proposition 9.9, we have

|pt(x, y)− pt(x, y0)|2 ≤ R(y, y0)E(pt(·, x), pt(·, x)) ≤ Ψ(d(y, y0))
V (y, d(y, y0))

· c1

tV (x,Ψ−1(t))
.

Using this and (DLHK(Ψ)),

pt(x, y) ≥ pt(x, x)− |pt(x, x)− pt(x, y)|

≥ c2

V (x,Ψ−1(t))
−

Ω
Ψ(d(x, y))

V (x, d(x, y))
· c1

tV (x,Ψ−1(t))

æ1/2

=
c2

V (x,Ψ−1(t))1/2

√
1

V (x,Ψ−1(t))1/2
− c3

µ
Ψ(d(x, y))

tV (x, d(x, y))

∂1/2
!

.

Now, taking c4 large enough, we have 1
2V (x,Ψ−1(t))1/2 ≥ c3

≥
Ψ(d(x,y))

tV (x,d(x,y))

¥1/2
if Ψ(d(x, y)) ≤ c4t holds. Here we

used (5.6). We thus obtain the result. §

Step F: Proof of (NLHK(Ψ)) ⇒ (LHK(Ψ)). This step is the same as Step 5 in the proof of Proposition
4.1.

Combining Step A–F, the proof of (RU(Ψ)) + (RL(Ψ)) ⇒ (HK(Ψ)) is completed.

5.3 Proof of Theorem 5.2: The rest

Since this will not be discussed in the summer school, we just give references. (HK(Ψ)) ⇒ (RU(Ψ)) +
(RL(Ψ)) is proved in [15] Section 4. (V G(Ψ−))+(RU(Ψ))+(RL(Ψ)) ⇒ (PI(Ψ)) and (V G(Ψ−))+(PI(Ψ)) ⇒
(RU(Ψ)) are proved in [15] subsection 2.2. They are proved for the case of weighted graphs, but the
translation to the current setting is easy.

6 Application: RW on critical branching processes

6.1 Background

We recall the bond percolation model on the lattice Zd: each bond is open with probability p ∈ (0, 1),
independently of all the others. Let C(x) be the open cluster containing x; then if θ(p) = Pp(|C(x)| = +∞)
it is well known (see [43]) that there exists pc = pc(d) such that θ(p) = 0 if p < pc and θ(p) > 0 if p > pc.
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If d = 2 or d ≥ 19 (or d > 6 for ‘spread out’ models) it is known (see [43, 51]) that θ(pc) = 0, and it
is conjectured that this holds for all d ≥ 2. At the critical probability p = pc it is believed that in any box
of side n there exist with high probability open clusters of diameter of order n – see [24]. For large n the
local properties of these large finite clusters can, in certain circumstances, be captured by regarding them
as subsets of an infinite cluster eC, called the ‘incipient infinite cluster’ (IIC).

This was constructed when d = 2 in [54], by taking the limit as N →∞ of the cluster C(0) conditioned
to intersect the boundary of a box of side N with center at the origin. For large d a construction of the
IIC in Zd is given in [49], using the lace expansion. It is believed that the results there will hold for any
d > 6. [49] also gives the existence and some properties of the IIC for all d > 6 for ‘spread-out’ models:
these include the case when there is a bond between x and y with probability pL−d whenever y is in a cube
side L with center x, and the parameter L is large enough. Rather more is known about the IIC for oriented
percolation on Z+ × Zd (see [50, 51]), but in this discussion, which mainly concerns what is conjectured
rather than what is known, we specialize to the case of Zd. We write eCd for the IIC in Zd. It is believed that
the global properties of eCd are the same for all d > dc, both for nearest neighbour and spread-out models. In
[49] it is proved for ‘spread-out’ models that eCd has one end – that is that any two paths from 0 to infinity
intersect infinitely often.

For large d, it is believed that the geometry of eCd is also similar to that of the IIC when ‘d = ∞’ – that
is to the IIC on a regular tree; this is supported by the results in [50, 49]. For trees the construction of the
IIC is much easier than for lattices, and there is a close connection between the IIC and a critical Bienaymé-
Galton-Watson branching processes conditioned on non-extinction. In [55], Kesten gave the construction of
the IIC G for critical branching processes. This is an infinite subtree, which contains only one path from the
root to infinity. This tree is quite sparse, and has polynomial volume growth: in the case when the offspring
distribution has finite variance, a ball B(x, r) in G has roughly r2 points. (This is when distance in G is
measured using the natural graph distance).

Let Y = (Yt, t ≥ 0) be the simple random walk on eCd, and qt(x, y) be its transition density. Define the
spectral dimension of eCd by

ds(eCd) = −2 lim
t→∞

log qt(x, x)
log t

,

(if this limit exists). Alexander and Orbach [1] conjectured that, for any d ≥ 2, ds(eCd) = 4/3. While it is
now thought that this is unlikely to be true for small d, the results on the geometry of eCd in [50, 49] are
consistent with this holding for large d. (Or for any d above the critical dimension for spread-out models).

Random walks on supercritical clusters in Zd are studied in [3] (transition density estimates) and [74]
(invariance principle for the quenched case for d ≥ 4; in the annealed case, invariance principle was proved
in [33]). In these cases the large scale behaviour of the random walk approximates that of the random walk
on Zd, and the unique infinite cluster has spectral dimension d.

In what follows, we will specialize to the case of critical percolation on a regular rooted tree with degree
n0 + 1. We keep n0 fixed, but (in view of possible future applications) wish to obtain estimates which do
not depend on n0.

6.2 The model and main results

We will define the random graph G we will be working with. We could regard this either as critical percolation
on the n0-ary tree B, conditioned on the cluster containing the root 0 being infinite, or as the (critical)
Bienaymé-Galton-Watson process with Bin(n0, 1/n0) offspring distribution, conditioned on non-extinction.

Let B be the n0-ary tree, and let 0 be the root. A point x in the nth generation (or level) is written
x = (0, l1, · · · , ln), where li ∈ {1, 2, · · · , n0}. Let Bn be the set of nn

0 points in the nth generation, and let
B≤n = ∪n

i=0Bi. If x ∈ Bk we write |x| = k. If x = (0, l1, · · · , ln) ∈ Bn, let a(x, r) = (0, l1, · · · , ln−r) be the
ancestor of x at level |x|− r.

We regard B as a graph (in fact a tree) with edge set E(B) = {{x, a(x, 1)}, x ∈ B − {0}}. Let ηe,
e ∈ E(B), be i.i.d. Bernoulli 1/n0 r.v. defined on a probability space (Ω,F , P ). If ηe = 1 we say the edge e
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Figure 4: Random walk on the GW-tree

is open. Let
C(0) = {x ∈ B : there exists an η–open path from 0 to x}

be the open cluster containing 0. It is clear that Zn = |C(0)∩Bn| is a critical GW process with Bin(n0, 1/n0)
offspring distribution. Here and in the following, |A| is a cardinality of the set A. As Z has extinction
probability 1, the cluster C(0) is P–a.s. finite.

We have

Lemma 6.1 ([55], Lemma 1.14) Let A ⊂ B≤k. Then

lim
n→∞

P (C(0) ∩ B≤k = A|Zn 6= 0) = |A ∩ Bk|P (C(0) ∩ B≤k = A),

and writing P0(A) = |A ∩ Bk|P (C≤k = A), P0 has a unique extension to a probability measure P on the set
of infinite connected subsets of B containing 0.

Let G0 be a rooted labeled tree chosen with the distribution P: we call this the incipient infinite cluster
(IIC) on B. For more information on G0 see [48, 55] but we remark that P–a.s. G0 has exactly one infinite
descending path from 0, which we call the backbone, and denote H.

It will be useful to give another construction of the IIC, obtained by modifying the cluster C(0) rather
than its law. We can suppose the probability space (Ω,F , P ) carries i.i.d.r.v. ξi, i ≥ 1 uniformly distributed
on {1, 2, · · · , n0}, and independent of (ηe). For n ≥ 0 let Ξn = (0, ξ1, . . . , ξn), and let

eηe =
Ω

1 if e = {Ξn,Ξn+1} for some n ≥ 0,
ηe otherwise.

Then (see [48]) if
G = {x ∈ B : there exists a eη–open path from 0 to x},

G has law P. It is clear that the backbone of G is the set H = {Ξn, n ≥ 0}.

For x, y ∈ B let
Px(·) = P(·|x ∈ G), Pxy(·) = P(·|x, y ∈ G),

and let Ex and Exy denote expectation with respect to Px and Pxy respectively. Given a descending path
b = {0, b1, b2, . . .}, (which we call a possible backbone) let

Px,b(·) = P(·|x ∈ G,H = b),

and define Px,y,b analogously.
For each x, y ∈ B, let γ(x, y) be the unique geodesic path connecting x and y. We say that z is a middle

point of γ(x, y) if z ∈ γ(x, y) and |d(x, z) − 1
2d(x, y)| ≤ 1

2 . We remark that the construction of G makes it
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clear that Px,y,b(ηe = 1) = 1 if the edge e lies in any of the paths b, γ(0, x) and γ(0, y), and that under Px,y,b

the r.v. ηe, e 6∈ b ∪ γ(0, x) ∪ γ(0, y) are i.i.d. with Px,y,b(ηe = 1) = 1/n0.
For each fixed G = G(ω), we will consider the continuous time simple random walk {Yt} on G as in

subsection 3.1 and define its heat kernel qω
t (x, y) as in (3.1).

Theorem 6.2 (a) There exist c0, c1, c2, S(x) such that for each x,

Px(S(x) ≥ m) ≤ c0(log m)−1,

and on {ω : x ∈ G(ω)}

c1t
−2/3(log log t)−17 ≤ qω

t (x, x) ≤ c2t
−2/3(log log t)3 for all t ≥ S(x).

(b) ds(G) = 4/3 P–a.s.

The cluster G contains large scale fluctuations, so that qt(x, x) does have oscillations of order (log log t)a

as t →∞.

Proposition 6.3

lim inf
t→∞

(log log t)1/6t2/3qω
2t(0, 0) ≤ 2, P 0

ω − a.s.

Theorem 6.4 (a) We have

c1t
1/3 ≤ ExEx

ωd(x, Yt) ≤ ExEx
ω sup

0≤s≤t
d(x, Ys) ≤ c2t

1/3.

(b) There exists T (x) with Px(T (x) < ∞) = 1 such that

c3t
1/3(log log t)−12 ≤ Ex

ω[d(x, Yt)] ≤ c4t
1/3 log t for all t ≥ T (x).

We also have off-diagonal bounds for qω
t (x, y). For the quenched case, our theorem is the following shape.

Theorem 6.5 (1) Let x, y ∈ G, t > 0 be such that N := [
p

d(x, y)3/t] ≥ 8. Then, there exists an event
F∗ = F∗(x, y, t) that satisfies

Px0,y0,b(F∗(x, y, t)) ≥ 1− c1 exp(−c2N),

so that the following holds:
qω
t (x, y) ≤ c3t

−2/3 exp(−c4N), ∀ω ∈ F∗.

(2) Let x, y ∈ G, m ≥ 1, κ ≥ 1 and let T = d(x, y)3κ/m2. Then, there exists an event G∗ = G∗(x, y,m,κ)
that satisfies

Px,y,b( G∗(x, y,m,κ) holds ) ≥ 1− c1κ
−1,

so that the following holds:

q2T (x, y) ≥ c2T
−2/3e−c3(κ+c4)m, ∀ω ∈ G∗.

For the annealed case, the off-diagonal bounds for qω
t (x, y) are of the same form as the bounds

ct−df /dw exp(−c0(d(x, y)dw/t)1/(dw−1))

obtained for regular fractal graphs.
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Theorem 6.6 (a) Let x, y ∈ B. Then

Ex,yq
ω
t (x, y) ≤ c1t

−2/3 exp (− c2(
d(x, y)3

t
)1/2).

(b) Let x, y ∈ B, with d(x, y) = R, and c3R ≤ t. Then

Ex,yq
ω
t (x, y) ≥ c4t

−2/3 exp(−c5(R3/t)1/2).

Define the continuous time rescaled height process

eZ(n)
t = n−1/3d(0, Ynt), t ≥ 0.

By Theorem 6.4 (a) the processes ( eZ(n), n ≥ 1) are tight with respect to the annealed law given by the
semi-direct product P∗ = P × P 0

ω . (This is much easier to prove than the full convergence given in [55].)
However, the large scale fluctuations in G mean that we do not have quenched tightness.

Theorem 6.7 P-a.s., the processes ( eZ(n), n ≥ 1) are not tight with respect to P 0
ω.

6.3 Ideas of the proof

The proof consists of the analytic part and the probabilistic part. We would emphasize that we cannot
expect (VD) for this kind of random object, so we need estimates without assuming (VD).

Definition 6.8 Let x ∈ G, r ≥ 1. Let M(x, r) be the smallest number m such that there exists a set
A = {z1, . . . , zm} with d(x, zi) ∈ [r/4, 3r/4] for each i, such that any path γ from x to B(x, r)c must pass
through the set A.

Analytic estimates For fixed r ≥ 1 and x0 ∈ G, we denote B = B(x0, r), M = M(x0, r), V = V (x0, r).

Proposition 6.9 (a) Let (G,µ) be a weighted graph and suppose that the edge weights satisfy µxy ≥ 1 for
all x and y. Then

q2rV (x,r)(x, x) ≤ 2
V (x, r)

, x ∈ G, r > 0.

(b) Assume further that G is a tree. Let V1 = V1(x0, r) = V (x0, r/(32M(x0, r))). Then if x ∈ B(x0, r/(32M)),

P x(τB ≤ t) ≤
≥
1− V1

64MV

¥
+

t

2rV
,

and

q2t(x, x) ≥ c1V1(x0, r)2

V (x0, r)3M(x0, r)2
for t ≤ rV1(x0, r)

64M(x0, r)
.

(a) can be proved by carefully chasing Step A in subsection 5.2 and modifying to the current situation.
For (b), first, similar argument as in Step B in subsection 5.2 (using the tree property and M(x, r) instead
of (VD)) gives the estimate of Ex

ω[τB(x,r)]. Then the argument in Step 3 in the proof of Proposition 4.1 gives
the desired result. See [16] for details.

Probabilistic estimates By the above analytic estimates, we see that the information of V (x, r) and M(x, r)
are necessary for the on-diagonal estimates. We will show that the probability that V (x, r) and M(x, r)
behave badly is ‘small’.
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Proposition 6.10 (a) Let λ > 0, r ≥ 1 and x, y ∈ B, and b be a possible backbone. Then

Px,y,b(V (x, r) > λr2) ≤ c0 exp(−c1λ),

and
Px,y,b(V (x, r) < λr2) ≤ c2 exp(−c3/

√
λ).

(b) For any ε > 0

lim sup
n→∞

V (0, n)
n2(log log n)1−ε

= ∞, P− a.s.

(c) There exist c4, c5 > 0 such that for each r ≥ 1 and each x, y ∈ B, and possible backbone b

Px,y,b(M(x, r) ≥ m) ≤ c4e
−c5m.

These can be obtained, basically through large deviation estimates of the total population size of the
critical branching process. See [16] for details.

We now define a ‘good’ random set.

Definition 6.11 Let x ∈ B, r ≥ 1, λ ≥ 64. We say that B(x, r) is λ–good if it satisfies the following:

x ∈ G, r2λ−2 ≤ V (x, r) ≤ r2λ, M(x, r) ≤ 1
64

λ, V (x, r/λ) ≥ r2λ−4, and V (x, r/λ2) ≥ r2λ−6.

By Proposition 6.10, we have the following.

Corollary 6.12 For x ∈ B and any possible backbone b

Px,b(B(x, r) is not λ–good) ≤ c1e
−c2λ.

Combining these analytic and probabilistic estimates, we can obtain Theorem 6.2. To get off-diagonal
estimates, we need to take more refined ‘good’ random sets. See [16] for details.

7 Some open problems

Finally, we would mention several important open problems.

• Simpler stable equivalence conditions for (PHI(Ψ)): It is not easy to check (CS(Ψ)) in concrete ex-
amples. Quite recently, Barlow-Bass ([8]) proved (PHI(β)) ⇔ (VD) + (PI(β)) + (E(β)) for weighted
graphs. But we do not know if (E(β)) is stable under perturbations or not. There is a conjecture that
(PHI(β)) ⇔ (VD) + (PI(β)) + (RES(β)).

• Stability of (EHI): We do not know if (EHI) is stable under perturbations (especially under rough
isometries). This is one of the big open problems of this area.

• Stability of (UHK(Ψ)): As in subsection 8.2, there are various equivalence conditions for (UHK(Ψ)),
but so far we do not know if either of those is stable under perturbations. There is a related conjecture
by Grigor’yan that (UHK(β)) is equivalent to (FK(β)) plus so called the anti Faber-Krahn inequality,
which guarantees the optimality of (FK(β)) for balls.

• RW on IIC on Zd: It will be very interesting to obtain similar results as those in Section 6 for RW on
infinite incipient clusters on Zd. It is known (at least believed) that for the case of d = 2 and d large
enough, RW on such IIC is in the framework of resistance forms discussed in Section 5, so we have
reasonable analytic estimates. It is hard to obtain probabilistic estimates in these cases though.
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8 Appendix: Upper bounds

8.1 Local ultracontractivity

In this subsection, we give a generalized version of Theorem 2.1. It is a localized version as we will treat the
operator on B(x0, r∗) with Dirichlet boundary condition, but the global version can be recovered by taking
r∗ = ∞. This subsection is from [29], where the original ideas came from [27, 28] etc.

Let r∗ > 0, let m : X × (0, r∗] → R+ be a Borel function so that for each x ∈ X, m(x, ·) is monotone
decreasing and differentiable. In this subsection, Ψ is not necessarily of the form (3.2). We simply let
Ψ : R+ → R+ be a monotone increasing function with the following growth condition; there exists C1, C2 ≥ 1
such that

Ψ(2r) ≤ C1Ψ(r) ≤ Ψ(C2r), ∀r ∈ R+. (8.1)

Denote mx(t) := m(x,Ψ−1(t)) and define Mx(t) = − log mx(t). Throughout the paper, we assume that
there exists α > 0 such that

M 0
x(u) ≥ αM 0

x(t), ∀ t > 0, u ∈ [t, 2t], x ∈ M, (δ).

This means that the logarithmic derivative of mx has polynomial growth.
Let mi : R+ → R+, i = 1, 2. We shall say that m1 4 m2 if there exists C,C 0 > 0 such that m1(t) 4

Cm2(C 0t). We say that m1 and m2 are equivalent if m1 4 m2 and m2 4 m1. In this subsection, the
inequalities will be written modulo equivalence of functions. Note that we suppose m differential to have a
neat theory, but this assumption can be relaxed by regularising m and get an equivalence function.

Define the spectral gap of an open set Ω ⊂ X by

λmin(Ω) := inf
f∈FΩ\{0}

E(f)
kfk22

,

where FΩ := {f ∈ F : f = 0 in X \ Ω}. We will fix r∗ > 0 and denote Bx0 := B(x0, r∗) for each x0 ∈ X.
When the dependency of x0 is clear, we sometimes denote it by B.

kTBx0

t k1→∞ ≤ m(x0,Ψ−1(t)), ∀t ≤ Ψ(r∗),∀x0 ∈ X. (UC(Ψ))

EBx0 (u) ≥ kuk22
2Ψ(r)

log
kuk22

m(x0, r)kuk21
, ∀u ∈ Fx0,r∗ ,∀r ≤ r∗, and ∀x0 ∈ X. (logLN(Ψ))

θx0(kuk22) ≤ EBx0 (u), ∀u ∈ Fx0,r∗ s.t. kuk1 ≤ 1 with kuk22 ≥ m(x0, r
∗),∀x0 ∈ X. (Nash(Ψ))

λmin(Ω) ≥ 1
ϕ2

x0
(µ(Ω))

∀Ω ⊂ Bx0 with µ(Ω) ≤ 1
m(x0, r∗)

,∀x0 ∈ X. (FK(Ψ))

Here,

Fx0,r∗ := {f ∈ F : f = 0 in X \B(x0, r
∗)},

θx0(y) = −α

4
m0

x0
(m−1

x0
(y)) and ϕx0(y) =

1p
yθx0(1/y)

, so θx0(y) =
y

ϕ2
x0

(1/y)
.

(FK(Ψ)) is called the Faber-Krahn inequality.
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Theorem 8.1 Assume (δ). Then

(UC(Ψ)) ⇔ (logLN(Ψ)) ⇔ (Nash(Ψ)) ⇔ (FK(Ψ)).

This theorem includes two typical cases.

Case 1: Uniform case Let m(x, r) = m(r) and Ψ(t) = t. (So mx does not depend on x.) This case
corresponds to the work in [28].

Case 2: Volume doubling case Let m(x, r) = 1/V (x, r) and assume (VD). Especially, the case Ψ(t) = tβ for
some β ≥ 2 was treated in [36, 57].

Remarks. 1) We can prove the long time version of Theorem 8.1 in the same way. Namely, (UC(Ψ))
with t ≥ Ψ(r∗) is equivalent to (logLN(Ψ)) with kuk22

kuk21
≤ m(x0, 2Ψ(r∗)) and so on. The proof is the same as

that of Theorem 8.1.
2) In [57], Kigami introduced the following local Nash inequality.

EBx0 (u) + α
m(x0, r)kuk21

Ψ(r)
≥ β

kuk22
Ψ(r)

, ∀u ∈ Fx0,r∗ ,∀r ≤ r∗,∀x0 ∈ X. (KgLN(Ψ)).

(logLN(Ψ)) ⇒ (KgLN(Ψ)), but in general the converse is not true. If we assume the doubling condition
for m (typically, Case 2 above), then it holds that (logLN(Ψ)) ⇔ (KgLN(Ψ)).

We will need (FK(Ψ)) ⇒ (UC(Ψ)) in subsection 4.1, so we give the proof below.

Proof of (FK(Ψ)) ⇒ (Nash(Ψ)). We adopt the argument originated in [38]. For each λ > 0, since
u < 2(u− λ) on {u > λ}, we have

Z
u2 ≤ 4

Z

{u>2λ}
(u− λ)2 + 2λ

Z

{u≤2λ}
≤ 4

Z
(u− λ)2+ + 2λkuk1.

Applying (FK(Ψ)) to (u− λ)+ gives
Z

(u− λ)2+ ≤ ϕx0(µ({u > λ}))2EB((u− λ)+) ≤ ϕx0(
kuk1

λ
)2EB(u),

where we used the fact µ({u > λ}) ≤ kuk1/λ and ϕx0 is non-decreasing in the second inequality. Therefore,

kuk22 ≤ 4ϕx0(
kuk1

λ
)2EB(u) + 2λkuk1.

Take λ = kuk22/(4kuk1). We then obtain the following Sobolev-type inequality.

kuk22 ≤ 8ϕ2
x0

≥kuk21
kuk22

¥
E(u), ∀u ∈ Fx0,r∗ with

kuk21
kuk22

≤ 1
m(x0, r∗)

,∀x0 ∈ X. (Sob(Ψ))

It is easy to see that (Sob(Ψ)) implies (Nash(Ψ)). §

Proof of (Nash(Ψ)) ⇒ (UC(Ψ)) Since kTBuk1 ≤ kuk1, replacing u by TBu in (Nash(Ψ)) gives

θx0(kTBuk22) ≤ EB(TB
t u), ∀u ∈ Fx0,r∗ , kuk1 = 1. (8.2)

Let I(t) = kTB
t uk22, then I 0(t) = 2( d

dtT
B
t u, TB

t u) = −2EB(TB
t u). It follows from (8.2) that

I 0(t) ≤ −2θx0(I(t)).

By integration, we have

−
Z t

0

I 0(s)
θx0(I(s))

ds =
Z I(0)

I(t)

dx

θx0(x)
≥ 2t.
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By definition, we have

2t =
Z ∞

mx0 (2t)

dx

θx0(x)
,

so Z ∞

I(t)

dx

θx0(x)
≥

Z I(0)

I(t)

dx

θx0(x)
≥

Z ∞

mx0 (2t)

dx

θx0(x)
.

Thus, we obtain I(t) ≤ mx0(2t). It follows that kTB
t k21→2 ≤ mx0(2t). Since TB

t is symmetric, we have

kTB
t k1→∞ ≤ kTB

t/2k1→2kTB
t/2k2→∞ = kTB

t/2k
2
1→2 ≤ mx0(t),

which is the desired inequality. §

8.2 Equivalence to (UHK(β))

In [36], A. Grigor’yan proved various equivalence conditions for (UHK(β)) under (VD). To state his main
theorem, we prepare two more notions.

• X satisfies Ē(β) if there exist C, ν > 0 such that for any ball B(x0, r) in X and for any non-empty
open set Ω ⊂ B(x0, r),

ess supx∈ΩEx[τΩ] ≤ Crβ
≥ µ(Ω)

V (x0, r)

¥ν
. (Ē(β))

• X satisfies (Pβ) if there exist ε ∈ (0, 1) and δ > 0 such that

P x(τB(x,r) ≤ δrβ) ≤ ε, ∀x ∈ X, ∀r > 0. (Pβ)

Clearly, (Ē(β)) ⇒ (E(β)≤). As mentioned in the Step 1 of the proof of Proposition 4.1, (E(β)) ⇒ (Pβ).

Theorem 8.2 ([36] Theorem 12.1) Assume (VD). Then.

(UHK(β)) ⇔ (DUHK(β)) + (Pβ) ⇔ (Ē(β)) + (Pβ) ⇔ (FK(β)) + (Pβ)
⇔ (DUHK(β)) + (E(β)) ⇔ (Ē(β)) + (E(β)) ⇔ (FK(β)) + (E(β)).

We believe that Theorem 8.2 can be exptended to our time scaling Ψ without any difficulties.
It will be interesting to compare Theorem 8.2 to the following (β = 2 case), which was proved in the

setting of Riemannian manifolds in [38] Proposition 5.2.

(UHK(2) ⇔ (DUHK(2)) ⇔ (FK(2)).

9 Appendix 2: Miscellaneous proof

9.1 Consequences of (VD)

First, it is easy to deduce from (VD) that there exist c1,α > 0 such that if x, y ∈ X and 0 < r < R then

V (x,R)
V (y, r)

≤ c1

≥d(x, y) + R

r

¥α
. (9.1)

Lemma 9.1 Assume that X satisfies (VD). Then, there exists δ ∈ (0, 1) such that V (x, r/2) ≤ δV (x, r)
for all r > 0 and x ∈ X.
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Proof. SInce X has infinite diameter and since it is connected, there exists y ∈ X such that d(x, y) = 3r/4.
Note that B(x, r/2) ∩ B(y, r/4) = ∅ and B(x, r/2) ∪ B(y, r/4) ⊂ B(x, r), so that V (x, r/2) + V (y, r/4) ≤
V (x, r). Since B(x, r/2) ⊂ B(y, 5r/4), (VD) implies V (x, r/2) ≤ V (y, 5r/4) ≤ cV (y, r/4) where c > 0 is
independent of r, x and y. Combining these facts, we obtain (1 + c−1)V (x, r/2) ≤ V (x, r). §

Finally, we give the following covering lemma.

Lemma 9.2 Assume that X satisfies (VD). For x0 ∈ X and 0 < s ≤ R ≤ ∞, there exists a cover of
B(x0, R) by balls B(xi, s) with xi ∈ B(x0, R) such that no point in X is in more than L0 of the B(xi, 2s).
Here L0 depends only on X.

Proof. Since X is a locally compact separable metric space, there is an increasing sequence of compact
sets {Kn}n≥1 such that ∪n≥1Kn = B(x0, R). Now, take x1

1 ∈ K1 and choose x1
2, x

1
3, · · · ∈ K1 by letting x1

i+1
be any point in K1 \ ∪i

j=1B(x1
j , s). We do this until we can no longer proceed. Since K1 is compact, there

is a finite subset {xi}l1
i=1 ⊂ {x1

i }i such that K1 ⊂ ∪l1
i=1B(xi, s). We next choose x2

1, x
2
2, · · · ∈ K2 by letting

x2
i+1 be any point in K2 \ (∪l1

i=1B(xi, s) ∪ ∪i
j=1B(x2

j , s)). Again we do this until we can no longer proceed.
By doing this procedure iteratively, we obtain a desired open covering of B(x0, R). Note that the xi must
be at least s distance apart, so that the balls {B(xi, s/2)}i are disjoint. Now suppose y is in N of the balls
B(xi, 2s), i ∈ N (N may be infinite at this stage). Using (9.1), there exists such that for each of these we
have V (y, 3s)/V (xi, s/2) ≤ N0. Since B(y, 3s) contains N disjoint balls B(xi, s/2),

V (y, 3s) ≥
X

i:y∈B(xi,2s)

V (xi, s/2) ≥ NN−1
0 V (y, 3s),

which implies N ≤ N0, independent of y and s. §

9.2 Proof of (VD) + (DUHK(Ψ)) ⇒ (E(Ψ)≤)

Let c0 ≥ 1. By (9.1) and (DUHK(Ψ)), we have

P y(τB(x,r) > Ψ(c0r)) ≤ P y(YΨ(c0r) ∈ B(x, r)) ≤
Z

B(x,r)
pΨ(c0r)(y, z)dµ(z)

≤
Z

B(x,r)

c1

V (z, c0r)
dµ(z) ≤

Z

B(x,r)

2αc1

V (x, c0r)
dµ(z) =

2αc1V (x, r)
V (x, c0r)

.

By Lemma 9.1, we may choose c0 so that the last value of the above inequality is less than 1/2. So, by the
Markov property of {Yt}, we conclude

P y(τB(x,r) > kΨ(c0r)) ≤ 2−k, ∀k ≥ 1.

Hence,
Ey[τB(x,r)] ≤

X

k≥0

P y
≥
(k + 1)Ψ(c0r) ≥ τB(x,r) ≥ kΨ(c0r)

¥
(k + 1)Ψ(c0r) ≤ 4Ψ(c0r),

for all r > 0 and x, y ∈ X. We thus obtain (E(Ψ)≤) §

9.3 Oscillation inequalities and the Hölder continuity

In this subsection, we will assume (EHI) and deduce various Oscillation inequalities and Hölder continuity
of harmonic functions.

Let u be nonnegative and harmonic in B(x0, R). To be precise, the definition of (EHI) in subsection 3.2
(III) should have been,

ess supB(x0,R/2)u ≤ c1ess infB(x0,R/2)u. (9.2)
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x0 here is x in the definition of (EHI). We will show here that (9.2) implies the continuity of u inside the
ball B(x0, R), so that (EHI) holds. Indeed, take x1 and r such that B(x1, 3r) ⊂ B(x0, R). By looking at
Cu + D for suitable constants C and D, we may suppose that ess supB(x1,2r)u = 1 and ess infB(x1,2r)u = 0.
Hence by (9.2), we have

ess supB(x1,r)u− ess infB(x1,r)u ≤ (1− c−1
1 )ess supB(x1,r)u ≤ (1− c−1

1 ).

So if ρ = 1− c−1
1 then

ess supB(x1,r)u− ess infB(x1,r)u ≤ ρ[ess supB(x1,2r)u− ess infB(x1,2r)].

It follows easily that
ess supB(x1,r)u− ess infB(x1,r)u ≤ c2r

γ (9.3)

for some γ > 0. Define bu(x1) = limr→0 ess supB(x1,r)u. If one takes a countable basis {Bi} for X and
excludes those points x ∈ Bi such that u(x) /∈ [ess infBiu, ess supBi

u], then for every other x it is easy
to see, using (9.3), that u(x) = bu(x). Thus, bu is equal to u for µ-almost every x. Moreover, from (9.3)
we see that bu is continuous. Recall that in our definition of harmonic function we take a quasi-continuous
modification as defined in [35]. We conclude u = bu quasi-everywhere, and so u has a quasi-continuous
modification that is continuous. Using this modification and (9.2), we have

sup
B(x0,R/2)

u ≤ c1 inf
B(x0,R/2)

u,

which is the desired inequality.

Let HB(x0,r) be a space of harmonic functions on B(x0, r). Define the oscillation of a function f over B
by OscBf := ess supBf − ess infBf . Then, the above arguments also show the following.

Lemma 9.3 Assume (EHI).
1) For any ε > 0, there exists δ ∈ (0, 1) such that

OscB(x0,δr)u ≤ εOscB(x0,r)u, ∀u ∈ HB(x0,r).

2) There exist c1, γ > 0 such that

sup
x,y∈B(x0,ρr)

|u(x)− u(y)| ≤ c1ρ
γ sup

x∈B(x0,r)
|u(x)|, ∀ρ ∈ (0, 1),∀u ∈ HB(x0,r). (9.4)

We can now prove the following Hölder continuity of harmonic functions.

Proposition 9.4 Assume (EHI). There exists γ > 0 such that for any δ ∈ (0, 1), there exists C = Cδ > 0
so that the following holds,

sup
x,y∈B(x0,δr)

n |u(x)− u(y)|
d(x, y)γ

o
≤ Cr−γ sup

x∈B(x0,r)
|u(x)|, ∀u ∈ HB(x0,r).

Proof. Denote Br := B(x0, r). For x, y ∈ Bδr, we consider two cases. first, if d(x, y) ≥ (1− δ)r, then

|u(x)− u(y)| ≤ 2 sup
Br

|u| ≤ 2{(1− δ)r}−γd(x, y)γ sup
Br

|u|.

If d(x, y) < (1− δ)r, then B(z, (1− δ)r) ⊂ Br contains both x and y, where z ∈ X is the mid point of x and
y. Further x, y ∈ B(z, d(x, y)). Applying (9.4) with ρ = d(x, y)/{(1− δ)r} yields

|u(x)− u(y)| ≤ c1{(1− δ)r}−γd(x, y)γ sup
Br

|u|.
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We thus obtain the result. §

We next discuss about the oscillation of Green functions. Given open set Ω ⊂ X and f ∈ B(Ω), define
the Green operator GΩ as

GΩf(x) = Ex
h Z τΩ

0
f(Yt)dt

i
.

Denote Ē(Ω) := supz Ez[τΩ]. When Ω = B(x, r), we will abbreviate Ē(B(x, r)) as Ē(x, r). It is easy to see

kGΩkL∞→L∞ ≤ Ē(Ω). (9.5)

Lemma 9.5 Assume that Ē(Ω) < ∞. Then, for any f ∈ C0(Ω), GΩf is harmonic in Ω \ Suppf . Also, for
any open set Ω0 ⊃ Ω, GΩ0f −GΩf is harmonic in Ω.

Proof. Let uf = Gωf . Since Gω = (−∆Ω)−1, we see that uf ∈ D(∆Ω). So

E(uf , v) = −(∆Ωuf , v) = (f, v) = 0, ∀v ∈ F(Ω \ Suppf).

Thus, uf is harmonic in Ω \ Suppf . Similarly, set wf = GΩ0f −GΩf , then

E(wf , v) = E(GΩ0f, v)− E(GΩf, v) = (f, v)L2(Ω0) − (f, v)L2(Ω) = 0,

for any v ∈ F(ω). §

Proposition 9.6 Assume (EHI). Let f : B(x, r) → R be a bounded Borel function and set uf = GB(x,R)f .
Then, for any 0 < r < R,

OscB(x,δr)uf ≤ 2(Ē(x, r) + εĒ(x,R)kfk∞,

where ε and δ are the same as in Lemma 9.3 1).

Proof. If Ē(x,R) = ∞, there is nothing to prove, so assume that Ē(x,R) < ∞. Denote Br := B(x, r)
and let vf = GBrf . Then, by (9.5),

kufk∞ ≤ Ē(x,R)kfk∞, kvfk∞ ≤ Ē(x, r)kfk∞. (9.6)

By Lemma 9.5, wf := uf − vf is harmonic in Br. Using Lemma 9.3 1) and 0 ≤ wf ≤ uf , we obtain

OscBδrwf ≤ εOscBrwf ≤ εkwfk∞ ≤ εkufk∞.

Since uf = vf + wf ,

OscBδruf ≤ OscBδrvf + OscBδrwf ≤ kvfk∞ + εkufk∞ ≤ (Ē(x, r) + εĒ(x,R)kfk∞,

where we used (9.6) in the last inequality. Thus we obtain the desired inequality for f ≥ 0. For a general
function f , write f = f+ − f−. Then Osc uf = Osc (uf+ − uf−) ≤ Osc uf+ + Osc uf− , and the desired
inequality is obtained. §

9.4 Time derivative

We follow the arguments in [40, 42]. First, we show the following well-known fact in the semigroup theory.

Lemma 9.7 For any f ∈ L2, let ut = Ptf . Then, we have

k∂tutk2 ≤
1

t− s
kusk2, 0 < ∀s < t.
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Proof. Let {Eλ}λ≥0 be spectral resolution of the operator −∆. Then we have

ut = et∆f =
Z ∞

0
e−tλdEλf, kutk22 =

Z ∞

0
e−2tλdkEλfk2.

Thus, we have

∂tut =
Z ∞

0
(−λ)e−tλdEλf, k∂tutk22 =

Z ∞

0
λ2e−2tλdkEλfk2 =

Z ∞

0
λ2e−2(t−s)λe−2sλdkEλfk2.

Since λe−(t−s)λ ≤ (t− s)−1, we obtain

k∂tutk22 ≤
1

(t− s)2

Z ∞

0
e−2sλdkEλfk2 =

1
(t− s)2

kusk22,

which is the desired estimate. §

Corollary 9.8 For t > 0 and z ∈ X, the function t 7→ pt(·, z) is Frechet differentiable in L2 and

k∂tpt(·, z)k2 ≤
1

t− s

p
p2s(z, z), 0 < ∀s < t.

Proof. Let f = pε(·, z) for some ε > 0. Then, ut = Ptf = pt+ε(·, z). Thus, by Lemma 9.7,

k∂tpt+ε(·, z)k2 ≤
1

t− s
kps+ε(·, z)k2 =

1
t− s

q
p2(s+ε)(z, z).

Replacing t + ε, s + ε by t, s respectively, we obtain the result. §

Proposition 9.9 For any x, y ∈ X, the function t 7→ pt(x, y) is differentiable in t > 0 and

|∂t

∂t
pt(x, y)| ≤ 2

t

q
pt/2(x, x)pt/2(y, y).

Proof. By the Chapman-Kolmogorov equation, pt(x, y) = (pt−s(·, x), ps(·, y)) for any s ∈ (0, t), so that
∂tpt(x, y) = (∂tpt−s(·, x), ps(·, y)). Thus, applying Corollary 9.8,

|∂t

∂t
pt(x, y)| ≤k ∂tpt−s(·, x)k2kps(·, y)k2 ≤

1
t− s− r

p
p2r(x, x)p2s(y, y), 0 < ∀r < t− s.

Taking s = r = t/4, we obtain the result. §

9.5 Proof of Theorem 3.1: (d) ⇒ (e)

Recall from [35] Section 1.6 the definition of invariant sets and an irreducible Dirichlet form.

Lemma 9.10 Let X satisfy (EHI). Then E is irreducible.

Proof. Let A be an irreducible set, and suppose both µ(A) > 0 and µ(Ac) > 0. Then there exists a ball
B = B(x,R) with µ(A ∩ B0) > 0 and µ(Ac ∩ B0) > 0, where B0 = B(x,R/2). Since Pt1A = 1A it follows
that u = 1A and v = 1Ac are harmonic on B. So by (EHI) we have

ũ(x) ≤ Cũ(y), x, y ∈ B0.

Since u > 0 on a set of positive measure, we have that there exists x ∈ B0 with ũ(x) > 0; hence by the
(EHI), ũ > 0 on B0. But as ũ = 1A µ-a.e., we deduce that µ(Ac ∩B0) = 0, a contradiction. §
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Proposition 9.11 Let X satisfy (EHI), and B = B(x,R). Then Gg < ∞ on B if g ∈ L1
+(B).

Proof. (sketch). Consider the Dirichlet form EB with domain FB = {f ∈ F : f |Bc = 0}. Let A =
B(x,R/2) and h(x) = P x(TA < τB). Then h is excessive with respect to EB. If h were constant on B then
we would have h = 1 on B, and the set B would be an invariant set for E . Thus h is non-constant.

So by Ex. (4.22), p. 89 in [21], we deduce that the killed semigroup PB
t is transient. Hence (see [35]

Section 1.6) we have Gg < ∞ for any g ∈ L1
+(B,µ). §

Lemma 9.12 Let D be a bounded domain in X. Then (EHI) implies that there exists the Green density
gD(·, ·) which is continuous on (X × X) \ ∆g and gD(x, y) = gD(y, x) for all x, y ∈ (X × X) \ ∆g, where
∆g is the diagonal. Further, there exists C > 0 such that for any r > 0, if y0, y1 ∈ X satisfy d(y0, y1) ≥ 2r,
then

gD(y0, x) ≤ CgD(y0, y) ∀x, y ∈ B(y1, r). (9.7)

Proof. Let x0, x1 ∈ D, Choose r > 0 such that B(xi, 2r) ⊂ D, B(x0, 2r) ∩ B(x1, 2r) = ∅. Write
Bi = B(xi, 2r), B0

i = B(xi, r). Let f, g ∈ F with supports in B0
0 and B0

1, and
R

f =
R

g = 1. Let GD be the
Green operator for the process Y killed on exiting D. By Proposition 9.11 we have GDf < ∞, GDg < ∞.

Then if u ∈ F with Suppu ⊂ B(x1, 2r),

E(GDf, u) = (f, u) = 0, (9.8)

so GDf is harmonic on B1. Similarly GDg is harmonic on B0. By the (EHI) if x ∈ B0
1 then

GDf(x) ≤ CGDf(y), y ∈ B0
1. (9.9)

Similarly
GDg(x) ≤ CGDg(x0), x ∈ B0

0.

So
GDf(x1) ≤ C(g,GDf) = C(GDg, f) ≤ C2GDg(x0).

Now fix g such that C1 = GDg(x0) < ∞ – such a g exists by choosing g ≤ ch0. Then we have GDf(x1) ≤
c0||f ||1 for all f with support in B0

0. Therefore the kernel GD(x1, dx) has a density gD(x1, y) on B0
0. Since

(f,GDg) = (GDf, g) for f, g ∈ L2, it follows that gD(x, y) = gD(y, x) µ× µ–a.e.
Now, take y0, y1 ∈ X that satisfy d(y0, y1) ≥ 2r. For any ≤ > 0 and f ∈ L2 with support in B(y0, ≤r),

similarly to (9.8) we can show that GDf is harmonic on B(y1, (2 − ≤)r). Thus, by the same way as (9.9),
we have

GDf(x) ≤ CGDf(y), x, y ∈ B(y1, r). (9.10)

Now let fn(z) = V (y0, rn)−11B(y0,rn)(z) where ≤r ≥ rn ↓ 0. Applying (9.10) to fn and take n → ∞, we
obtain (9.7) for µ-a.e. y0. By the usual oscillation argument, we can deduce that gD(x, y) is continuous on
(X × X) \ ∆g. Especially, gD(x, y) = gD(y, x) for all x, y ∈ (X × X) \ ∆g. We thus obtain (9.7) for all
y0 ∈ X. §

Now let M ≥ 2 be fixed. (In fact, we can take M=2.)

Definition 9.13 (E ,F) satisfies (HG) if there exists a constant c1 > 0 such that for any ball B(x0, R),
there exists the Green kernel gBR(x0, y) and for any 0 < r ≤ R/M , we have

sup
y/∈B(x0,r)

gBR(x0, y) ≤ c1 inf
y∈B(x0,r)

gBR(x0, y). (HG)

Lemma 9.14 (EHI) ⇒ (HG).
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Proof. We prove that if d(x0, x) = d(x0, y) = R, and B(x0, 2R) ⊂ D then

C−1
1 gD(x0, y) ≤ gD(x0, x) ≤ C1gD(x0, y). (9.11)

Once (9.11) is proved, then (HG) holds by the maximum principle (which holds for GDf and so for gD as
well). By symmetry it is enough to prove the right hand inequality of (9.11).

Let x0, y0 be the midpoints of γ(x0, x), and γ(x0, y). Thus d(x0, x0) = d(x0, y0) = R/2. Clearly we have
d(x0, y) ≥ R/2 and d(x, y0) ≥ R/2.

We now consider two cases.
Case 1. d(x0, y0) ≤ R/3. Let z be the midpoint of γ(x0, y0). Then d(z, x0) ≤ R/6 ≤ R/4. So applying

(9.7) to gD(x0, ·) in B(x0, R/4) ⊂ B(x0, R/2), we deduce that

C−1
2 gD(x0, x

0) ≤ gD(x0, z) ≤ C2gD(x0, x
0).

Now apply (9.7) to gD(x0, ·) in B(x,R/2) ⊂ B(x,R), to deduce that

C−1
2 gD(x0, x) ≤ gD(x0, x

0) ≤ C2gD(x0, x).

Combining these inequalities we deduce that

C−2
2 gD(x0, x) ≤ gD(x0, z) ≤ C2

2gD(x0, x),

and this, with a similar inequality for gD(x0, y), proves (9.11).
Case 2. d(x0, y0) > R/3. Apply (9.7) to gD(y, ·) in B(x0, R/2) ⊂ B(x0, R), to deduce that

C−1
2 gD(y, x0) ≤ gD(y, x0) ≤ C2gD(y, x0). (9.12)

Now look at gD(x0, ·). If z0 is on γ(y0, y) with d(y0, z0) = s ∈ [0, R/2] then as d(x0, y0) > R/3 and d(x0, y) ≥
R/2 we have d(x0, z0) ≥ max(R/3− s, s). Hence we deduce d(x0, z0) ≥ R/6. So applying (9.7) repeatedly to
gD(x0, ·) for a chain of balls B(z0, R/12) ⊂ B(z0, R/6) we deduce that

C−6
2 gD(x0, y0) ≤ gD(x0, y) ≤ C6

2gD(x0, y0). (9.13)

So, we obtain from (9.12) and (9.13),

gD(y, x0) ≤ C2gD(y, x0) ≤ C7
2gD(x0, y0), gD(x0, y0) ≤ C6

2gD(y, x0) ≤ C7
2gD(y, x0).

We have similar inequalities relating gD(x, x0) and gD(x0, y0), which proves (9.11). §

Lemma 9.15 Assume that (E ,F) satisfies (HG).
1) For any ball B(x0, R) and for any 0 < r ≤ R/M , we have

sup
y/∈B(x0,r)

gBR(x0, y) ≥ R(Br, B
c
R) ≥ inf

y∈B(x0,r)
gBR(x0, y). (9.14)

2) Let Bk = B(x0,Mkr) for k = 0, 1, · · ·. Then, for any integers 0 ≤ m < n,

sup
y/∈Bm

gBn(x0, y) ≥
n−1X

k=m

R(Bk, B
c
k+1) ≥ inf

y∈Bm

gBn(x0, y). (9.15)

Proof. For 1), first the following is standard (see for example (4.7) in [41]).

sup
y/∈B(x0,r)

gBR(x0, y) ≥ R(Br, B
c
R) ≥ inf

y∈B(x0,r)
gBR(x0, y).

48



Thus, using (HG), we obtain (9.14).
For 2), note first that the following holds by the definition of resistance

n−1X

k=m

R(Bk, B
c
k+1) ≤ R(Bm, Bc

n).

This and (9.14) implies the lower bound for inf gBn in (9.15). Next, by the reproducing property of gBk , we
know that gBk+1(x, ·)− gBk(x, ·) is a harmonic function in Bk. Thus,

gBk+1(x, y)− gBk(x, y) ≤ sup
z /∈Bk

gBk+1(x, z) ≤ cR(Bk, Bk+1), ∀y ∈ X, (9.16)

where the first inequality is by the maximum principle and the second inequality is by (9.14). For y /∈ Bm,
by (9.14)

gBm+1(x, y) ≤ c0R(Bm, Bm+1). (9.17)

For such y, adding up (9.17) with (9.16) for m < k < n, we obtain the upper bound of sup gBn in (9.15). §

Proof of (VD) + (EHI) + (RES(Ψ)) ⇒ (E(Ψ)).

Ex0 [τBR ] =
Z

gBR(x0, y)dµ(y) ≥
Z

B(x0,r)
gBR(x0, y)dµ(y) ≥ cR(Br, B

c
R)V (x0, r) ≥ cΨ(R),

where we used Lemma 9.15 1) in the second inequality and (VD) + (RES(Ψ)) in the last inequality.
Now, for each k ∈ Z, let rk = Mk, Bk = B(x0, rk) and let n0 be the minimum number such that R < rn0 .

Then

Ex0 [τBR ] ≤ Ex0 [τB(x0,rn0 )] =
Z

Bn0

gBn0 (x0, y)dµ(y)

=
n0−1X

m=−∞

Z

Bm+1\Bm

gBm(x0, y)dµ(y) ≤ c
n0−1X

m=−∞

≥ n0−1X

k=m

R(Bk, B
c
k+1)

¥
µ(Bm+1 \Bm)

= c
n0−1X

k=−∞

≥ kX

m=−∞
µ(Bm+1 \Bm)

¥
R(Bk, B

c
k+1) = c

n0−1X

k=−∞
µ(Bk+1)R(Bk, B

c
k+1)

≤ c0
n0−1X

k=−∞
Ψ(rk+1) ≤ c00Ψ(R),

where we used Lemma 9.15 2) in the second inequality and (VD) + (RES(Ψ)) in the third inequality. We
thus obtain (E(Ψ)). §

9.6 Proof of Theorem 3.1: (b) ⇒ (a)

Fix x0 ∈ X and for R > 0, let BR := B(x0, R). Let FBR = {u ∈ L2(X,µ) : u = 0 µ-a.e. on Bc
R} and

consider the part of the Dirichlet form (E ,FBR) (see [35] Section 4.4). Let {PBR
t } be the corresponding

semigroup.

Lemma 9.16 There exists a version of the heat kernel pBR
t (x, y) for {PBR

t } and, for each ε1, ε2 ∈ (0, 1),
there exists cε1,ε2 > 0 such that

pBR
t (x, y) ≥ cε1,ε2

V (x0, ε1R)
,

for all x, y ∈ B(x0, ε1R) and ε2Ψ(R) < t < Ψ(R).
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Proof. First, define
pBR

t (x, y) := pt(x, y)− Ex[pt−τBR
(YτBR

, y), τBR ≤ t], (9.18)

where Yt is the diffusion process corresponding to (E ,F) and τBR = inf{t ≥ 0 : Yt /∈ B(x0, R)}. Then, it is
easy to check, using the strong Markov property, that pBR

t (x, y) is a version of the heat kernel for {PBR
t }.

The proof of (9.18) is now a standard argument (see, for example, Lemma 5.1 in [34]). §
Let dν = dt ⊗ dµ, H = L2(R1 × X, dν) and F̃ = {u : R1 → F : A(u, u) + kuk2H < ∞} where

A(u, u) =
R
R1 E(u(t, ·), u(t, ·))dt. Let F̃∗ = {u : R1 → F∗ :

R
R1 ku(t, ·)k2F∗dt+ kuk2H < ∞}, where F∗ is the

dual of F in the sense F ⊂ L2(X,µ) ⊂ F∗. Note that F̃ ⊂ H = H∗ ⊂ F̃∗. Let

W̃ = {u ∈ F̃ :
∂u

∂t
∈ F̃∗}

Ẽ(u, v) = (u,
∂v

∂t
)ν +A(u, v) if u ∈ F̃ , v ∈ W̃,

where (u, v)ν =
R
R1

R
X uv dµ dt. Let {Yt(x)} be the diffusion process corresponding to (E ,F). Then the

semigroup corresponding to Ẽ can be written as Ptu(t0, x0) = E[u(t0 + t, Yt(x0))] so that the corresponding
generator is ∂

∂t + L (the corresponding diffusion is Zt = (t, Yt)), whereas the dual semigroup {P̂t} can be
written as P̂tu(t0, x0) = E[u(t0−t, Yt(x0))] and the corresponding generator is − ∂

∂t +L. (See [71] for details.)

Lemma 9.17 Let u be a non-negative solution of the heat equation on Q := I ×G, where I = (a, b) and G
is an open connected subset of X. Then u(t, x) ≥

R
pB

t−s(x, y)u(s, y)dµ(y) µ-a.e. x and all 0 < s < t where
B ⊂⊂ G.

Proof. The claim is equivalent to (u− P̂Q
t−su)(t, x) ≥ 0 for all (t, x) ∈ Q and all 0 < s < t.

Let α > 0. Then, Ẽα(u, g) ≥ 0 for all non-negative g ∈ F̃Q. So, for any non-negative α-excessive function
(w.r.t. (Ẽ , F̃Q) –see [71] Section 4.3, for a discussion of excessive functions in the parabolic case) v ∈ FQ,
we have

(u− e−αsP̂Q
s u, v)ν = (u, v − e−αsPQ

s v)ν

= (uQ, v − e−αsPQ
s v)ν + (Hα

Qu, v − e−αsPQ
s v)ν

≥ (uQ, v − e−αsPQ
s v)ν = Ẽα(u,GQ

α v − e−αsPQ
s GQ

α v)ν =: I1,

where u = uQ + Hα
Qu is the orthogonal decomposition of u into FQ ⊕ Hα

Qc (see p. 149 of [35] –the
same proof works for the parabolic case). Here the inequality in the third line is because Hα

Qu(x) =
Ex(e−ασQc u(ZσQc )) ≥ 0 (due to Lemma 5.1.3 in p. 105 of [71]) and the fact that v is α-excessive (the
definition of excessive functions in [71] is different from that in [35], but the proof of Theorem 2.2.1 in [35] also
establishes equivalent conditions for the parabolic case, too). Since GQ

α v − e−αsPQ
s GQ

α v =
R s
0 e−αlPQ

l vdl ∈
FQ is non-negative on Q, I1 ≥ 0. Thus u − e−αsP̂Q

s u ≥ 0 on Q. Since this holds for all α > 0, we have
u ≥ P̂Q

s u on Q. §
Once these properties are established, then proving (a) is standard; prove the oscillation inequality first

and then use the inequality to establish (PHI(Ψ)). Indeed, the proof of Lemma 5.2 and Theorem 5.4 in [34]
work line by line, with suitable changes of the scaling exponents.

9.7 Proof of Theorem 3.1: (a) ⇒ (b)

There is a standard argument, given in [73] and Section 5.5 of [72] which proves that (PHI(Ψ)) implies (VD),
(PI(Ψ)), and (HK(Ψ)). See also [46] for the case Ψ(s) 6= s2. However, as this argument uses existence and
regularity of caloric and harmonic functions, we will give more complete details of the initial stages of this
argument.
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First, if f ∈ L2(X,µ) we have that Ptf ∈ D(∆), and v(t, x) = Ptf(x) is a solution to the heat equation
in X × (0,∞). Let x ∈ X, t > 0, r = Ψ(t) and f ≥ 0 with

R
f = 1. Then applying (Ψ(Ψ)) in Q =

(0, 4t)×B(x, 2r) we obtain
sup
Q−

ṽ ≤ C inf
Q+

ṽ.

Hence if B = B(x, r) then since
R

Psf = 1

µ(B) sup
Q−

ṽ ≤ C

Z

B
v(2t, y)µ(dy) ≤ C.

Thus for each x ∈ X we have
gPtf(x) ≤ c(t)||f ||1.

Given this inequality, we can use the same arguments as in p. 52 of [7] (using the results in [79]) to deduce
the existence of a transition density pt(x, y).

Lemma 9.18 There exist an exceptional set N and a jointly measurable transition density pt(x, y), t > 0,
x, y ∈ (X \N)× (X \N), such that

Pt(x,A) =
Z

A

pt(x, y)µ(dy) ∀x ∈ X \N, ∀t > 0, ∀A ∈ B(X \N),

pt(x, y) = pt(y, x) ∀x, y, t,

pt+s(x, z) =
Z

ps(x, y)pt(y, z)µ(dy) ∀x, z, t, s.

Since pt(x, y) = Pt/2pt/2(·, y)(x) it follows that pt(·, y) is a solution of the heat equation. Now take a quasi
continuous modification p̃t(x, y) w.r.t. x and use it in the procedure of (4) in [79]. Then, by Theorem 1
in [79], there exists pt(x, y) which is quasi continuous and satisfies the three equalities in Lemma 9.18. (In
fact, the uniqueness criteria in Theorem 1 in [79] shows that this pt(x, y) is the same as the original one.)
Thus it satisfies the (PHI(Ψ)), and so can be extended to (0,∞)×X ×X as a jointly continuous function.

We now sketch the argument that (PHI(Ψ)) implies (VD), (PI(Ψ)), and (HK(Ψ)). We begin with (VD),
which also gives a key lower bound on the transition density for the killed process. Applying the (PHI(Ψ))
to the function u(t, x) = pt(x0, x) in the region Q(x0, 0, R) we obtain (writing T = Ψ(R))

p2T (x0, x0) ≤ cp4T (x0, y), y ∈ B(x0, R).

Integrating over B(x0, R) gives

p2T (x0, x0)V (x0, R) ≤ c

Z

B(x0,R)
u(4T, y) ≤ c, (9.19)

which gives an upper bound on p2T (x0, x0) in terms of the volume of balls.
To obtain a lower bound, write Bλ = B(x0,λR), and let ϕ ∈ F be a cut-off function for B5/2 ⊂ B3. Let

p0
t (x, y) be the heat kernel for the process Y killed on exiting B4. Define

u(t, x) =
Ω

ϕ(x), x ∈ B2, 0 < t ≤ 2T ,R
B3

p0
t−2T (x, y)ϕ(y)µ(dy), x ∈ B2, 2T < t ≤ 4T .

Lemma 9.19 u is a solution of the heat equation in Q(x0, T,R).
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Proof. The function ut(x, t) = ∂u
∂t exists for t > 2T , and is zero for t < 2T . Since u(x, t) is continuous at

t = 2T for x ∈ B, it is straightforward to check that ut is the derivative of u in the Schwartz’ distribution
sense.

Since we have u(t, ·) ∈ D(∆) for all t > 2T , we have for f ∈ F ∩ C(X) with support in B2 that
Z

fut dµ = −E(f, u(t, ·)), t > 2T. (9.20)

If t < 2T then since u = 1 on B2 (9.20) also holds for t < 2T . Thus it follows that (3.3) holds. §

We can now, as in [73, 72, 46], use (PHI(Ψ)) in Q(x0, 0, R) to obtain

1 = u(y, 2T ) ≤ cu(x0, 4T ) ≤ c

Z

B3

p0
2T (x0, y), y ∈ B(x0, R). (9.21)

Using (PHI(Ψ)) in a chain of regions Q(yi, ti, r) ⊂ [0, 4T ]×B(x0, 4R) we obtain

p0
2T (x0, y

0) ≤ cp0
4T (x0, y), y0 ∈ B(x0, 3R), y ∈ B(x0, R). (9.22)

Integrating (9.22) over y0 ∈ B3 gives
Z

B3

p0
2T (x0, y

0)µ(dy0) ≤ cp0
4T (x0, x0)V (x0, 3R),

and combining this with (9.21), we deduce that

V (x0, 3R)−1 ≤ cp0
4T (x0, y), y ∈ B(x0, R). (9.23)

The inequalities (9.19) and (9.23) control pt(x0, x0) from above and below in terms of the volume of balls,
and since t → pt(x0, x0) is decreasing one easily deduces, by the same arguments as in [72], that volume
doubling holds.

Given the lower bound (9.23), the proof of (HK(Ψ)) now follows as in Section 5 of [46] and in the proof
of Proposition 4.1. For the global lower bound one uses (9.23) and a standard chaining argument (Step 5
of the proof of Proposition 4.1). (9.23) gives uniform control of the probability that Y exits a ball radius r
before time t = Ψ(r), and using this the upper bounds on pt(x, y) follow as in p. 1472–1475 of [46].

We remark that (9.23) also gives a lower bound on the transition density of the process Y reflected at
∂B (see [26]). Using this the argument of [73] can be used to obtain (PI(Ψ)).

Remark. The equivalence (a) ⇔ (b) is well-known for manifolds when Ψ(s) = s2. For MMD with Ψ(s) = s2,
it is indirectly proved in [75]. (There it is proved that each condition is equivalent to (VD) + (PI(2)).) For
MMD with general time scaling, [46] proves the equivalence assuming apriori that solutions to the heat
equation are sufficiently regular. (See also [41] for the case of an infinite connected weighted graph.) We
have proved the equivalence without assuming any apriori condition for solutions to the heat equation.

9.8 Proof of Proposition 4.5

This first step is to use (CS(Ψ)) to obtain the following weighted Poincaré and Sobolev inequalities, which
will replace (2.5) in the iteration argument in subsection 2.4.

Proposition 9.20 (Weighted Poincaré inequalities) Let I = B(x, s) with s ≤ R. Suppose f and its gradient
are square integrable over I∗ = B(x, 2s). Let fA = µ(A)−1

R
A fdµ.

(a) We have Z

I
f2dγ ≤ c1(s/R)2θΨ(R)

≥ Z

I∗
dΓ(f, f) + Ψ(s)−1

Z

I∗
f2dµ

¥
. (9.24)
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(b) We have Z

I
(f − fI∗)2dγ ≤ c2(s/R)2θΨ(R)

Z

I∗
dΓ(f, f). (9.25)

(c) If J ⊂ I, then Z

J
f2dγ ≤ c3(s/R)2θΨ(R)

Z

I∗
dΓ(f, f) + µ(J)−1

≥Z

J
|f |dγ

¥2
.

(d) We have Z

B(x0,R)
dγ ≤ c4V (x0, R).

Proof. (a) Using the definition of γ and (3.5),
Z

I
f2dγ =

Z

I
f2dµ + Ψ(R)

Z

I
f2dΓ(f, f)

≤
Z

I
f2dµ + c5(s/R)2θΨ(R)

Z

I∗
dΓ(f, f) + c5(s/R)2θΨ(R)Ψ(s)−1

Z

I∗
f2dµ.

Since β ≥ β̄ ≥ 2θ, and s ≤ R this implies (a).
For (b), applying (9.24) to f − fI∗ we have

Z

I
(f − fI∗)2dγ ≤ c6(s/R)2θΨ(R)

≥ Z

I∗
dΓ(f, f) + Ψ(s)−1

Z

I∗
(f − fI∗)2dµ

¥
. (9.26)

Using (PI(Ψ)) applied to the ball I∗ we have
Z

I∗
(f − fI∗)2dµ ≤ c7Ψ(s)

Z

I∗
dΓ(f, f).

Substituting this into (9.26) gives (9.25).
(c) Now let b =

R
J fdγ/

R
J dγ. Then
Z

J
f2dγ =

Z

J
(f − b)2dγ + b2

Z

J
dγ

≤
Z

J
(f − fI∗)2dγ +

≥ Z

J
dγ

¥−1≥ Z

J
fdγ

¥2
.

≤
Z

I
(f − fI∗)2dγ + µ(J)−1

≥ Z

J
|f |dγ

¥2
.

Using (9.25) to bound the first term of the above inequalities completes the proof of (c).
(d) follows from (a) by taking s = R and f = 1, and using (VD). §

Our next result is a weighted Nash inequality. Recall that for any set J ⊂ X, Js := {y : d(y, J) ≤ s}.

Proposition 9.21 (Weighted Nash inequality) Let s ≤ R and J ⊂ B(x0, R) be a finite union of balls of
radius s. Suppose the gradient of f is square integrable over Js and

R
Js f2dγ < ∞. There exist c1 < ∞ and

α1 ∈ (0, 1) such that

µ(J)−1
Z

J
f2dγ ≤ c1

h
Ψ(R)µ(J)−1

Z

Js
dΓ(f, f) + (s/R)−2θµ(J)−1

Z

J
f2dγ

i1−α1
h
µ(J)−1

Z

J
|f |dγ

i2α1

.
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Proof. Suppose that 0 < t < s. Using Lemma 9.2, we can cover J by balls B(xi, t) with xi ∈ J so that
any point of Js is in at most L0 of the balls B(xi, 2t). Set Bi = B(xi, t) ∩ J and B∗

i = B(xi, 2t). Then
∪iBi = J , ∪iB∗ ⊂ Js, and

P
µ(B∗

i ) ≤ L0µ(Js).
As J is a union of balls, for each i there exists yi so that d(xi, yi) = t/2 and B(yi, t/2) ⊂ J . Then by

(9.1),
µ(J)
µ(Bi)

≤ µ(J)
µ(B(yi, t/2))

≤ c2

µ
R

t

∂α

. (9.27)

By Proposition 9.20 (c), and (9.27)
Z

J
f2dγ ≤

X

i

Z

Bi

f2dγ

≤ c3(t/R)2θΨ(R)
X

i

Z

B∗
i

dΓ(f, f) +
X

i

1
µ(Bi)

≥ Z

Bi

|f |dγ
¥2

≤ c4(t/R)2θΨ(R)L0

Z

Js
dΓ(f, f) + c5(R/t)αµ(J)−1

≥ X

i

Z

Bi

|f |dγ
¥2

≤ c6(t/R)2θΨ(R)
Z

Js
dΓ(f, f) + c7(R/t)αµ(J)−1

≥ Z

J
|f |dγ

¥2
.

Hence
µ(J)−1

Z

J
f2dγ ≤ c8[(t/R)2θA + (R/t)αB], (9.28)

where
A =

h
Ψ(R)µ(J)−1

Z

Js
dΓ(f, f) + (s/R)−2θµ(J)−1

Z

J
f2dγ

i
, B =

h
µ(J)−1

Z

J
|f |dγ

i2
.

If t ≥ s, (9.28) is obvious.
We choose t so that the two terms on the right hand side of (9.28) are equal. Thus (t/R)2θ+α = B/A

(so (t/R)2θA = A1−2θ/(2θ+α)B2θ/(2θ+α)), and substituting this into (9.28) completes the proof, with α1 =
2θ/(2θ + α). Note that if θ = 1 and α = d we obtain the powers in the standard Nash inequality. §

It is known that the Nash inequality is equivalent to the Sobolev inequality ([78, 25]). Using the fact,
we obtain Proposition 4.5.

9.9 Proof of (4.27)

Without loss of generality, we multiply u by a constant so that V (x0, R)−1
R
B(x0,R) log v = w = 0. Recall

that v is either u or u−1 and define Φ(t) = ess supQ(t) log v.

Lemma 9.22 Let 1 ≥ s > t > 0. Then

Φ(s) ≤ 3
4Φ(t) + c1(s− t)−ζ1 . (9.29)

Proof. Fix t and write Φ for Φ(t). Let c2 > e satisfy c2 = 6 log c2. If Φ(t) ≤ c2, then

Φ(s) ≤ Φ(t) ≤ 3
4
Φ(t) +

1
4
c2,

so that (9.29) holds provided c1 ≥ c2/4.
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Now suppose Φ > c2. From Proposition 9.20 (d) we have
R
Q(t) dγ ≤ c3V (x0, R). By Proposition 4.9 (b)

and the fact that vp ≤ epΦ on Q(t),
Z

Q(t)
v2pdγ =

Z

Q(t)∩{log v≥Φ/2}
v2pdγ +

Z

Q(t)∩{log v<Φ/2}
v2pdγ

≤ e2pΦ
Z

Q(t)∩{log v≥Φ/2}
dγ + epΦ

Z

Q(t)∩{log v<Φ/2}
dγ

≤ 4c4e2pΦ

Φ2
V (x0, R) + epΦ

Z

Q(t)
dγ ≤ c5

≥e2pΦ

Φ2
+ epΦ

¥
V (x0, R).

Let p = 2
Φ log Φ, so that epΦ = Φ2. As Φ > c2 we have p < (2/c2) log c2 = 1

3 . So

V (x0, R)−1
Z

Q(t)
v2pdγ ≤ c5e

pΦ
≥
1 +

epΦ

Φ2

¥
= 2c5e

pΦ.

Therefore by Corollary 4.8,

Φ(s) =
1
2p

log[ess supQ(s)v
2p] ≤ 1

2p
log

h
c6(s− t)−ζ1V (x0, R)−1

Z

Q(t)
v2pdγ

i

≤ 1
2p

log
h
c7(s− t)−ζ1epΦ

i
=

h
1 +

log(c7(s− t)−ζ1)
2 log Φ

iΦ
2

. (9.30)

Without loss of generality we may take c7 larger than c2. If Φ(t) ≥ c7(s − t)−ζ1 , then by (9.30)
Φ(s) ≤ 3

4Φ(t), and (9.29) is satisfied. If, on the other hand, Φ(t) ≤ c7(s− t)−ζ1 , then since Φ(s) ≤ Φ(t), we
have (9.29) satisfied with c1 = c7. §

Proof of (4.27). Multiplying u by a constant we can assume
R
B(x0,R) log udµ = 0 as before. Choose

tj = 1/(j + 1), so that t0 = 1 and ti ↓ 0. Then by Lemma 9.22,

Φ(t0) ≤ 3
4Φ(t1) + c2(t0 − t1)−ζ1

≤ (3
4)2Φ(t2) + c2(t0 − t1)−ζ1 + 3

4c2(t1 − t2)−ζ1

≤ · · · ≤ (3
4)nΦ(tn) +

Pn
i=1(

3
4)i−1c2(ti−1 − ti)−ζ1 ,

for any n ≥ 0. Since Φ(tn) ≤ ess supB(x0,R) log v < ∞, and

∞X

i=1

(3
4)i−1c2(ti−1 − ti)−ζ1 = c3 < ∞,

we obtain (4.27). §
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