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2 Classical metheods

2.1 History in brief

Before explaining the results for sub-diffusive cases, let us very briefly overview the history for
diffusive cases. See [30, 72] etc. for details.

For any divergence operator £ = 3 ", %(ai‘j(l‘)%) on R" satisfying a uniform elliptic con-
dition, Aronson ([2]) proved (2.1) with u(B(z,t'/?)) < t%2. Later in the 20th century, there were
various outstanding results in the field of global analysis on manifolds. Let A be the Laplace-Beltrami
operator on a complete Riemannian manifold X with the Riemannian metric d and with the Rieman-
nian measure y. Li-Yau ([65]) proved the remarkable fact that if X has non-negative Ricci curvature,

then the heat kernel p,(z,y) satisfies

‘@ d(z,y)? Co d(z,y)?
WGXP(_i) Spt(:v,y) < WGXP(—i). (2.1)

clt Cgt

A few years later, Grigor'yan ([39]) and Saloff-Coste ([73]) elegantly refined the result and proved,
in conjunction with the results by Fabes-Stroock ([34]) and Kusuoka-Stroock ([63]), that (2.1) is
equivalent to a volume doubling condition (VD) plus Poincaré inequalities (PI(2)) —see Appendix
for definition. The results were then extended to the framework of Dirichlet forms in [75, 76, 20|, to
the framework of graphs in [32]. Detailed heat kernel estimates are strongly related to the control
of harmonic functions, i.e. elliptic and parabolic Harnack inequalities (EHI), (PHI(2)) on X. The
origin of ideas and techniques used in this field go back to Nash ([70]), Moser ([68, 69]) and there
are many other significant works in this area. Summarizing, the following equivalence holds.

(2.1) & (VD) + (PI(2)) & (PHI(2)). (2.2)

An important corollary of this fact is, since (VD) and (PI(2)) are stable under certain perturbations
of the operator, that (2.1) and (PHI(2)) are also stable under these perturbations.



2.2 The Nash inequality

Let X be a locally compact separable metric space and let (€, F) be a Dirichlet form on L?(X, p). Let
—A, {P;} be the corresponding non-negative self-adjoint operator and the semigroup respectively.

The next theorem was proved by Carlen-Kusuoka-Stroock ([25]), where the original idea of the
proof of 1) = 2) was due to Nash [70].

Theorem 2.1 (The Nash inequality, [25])
The follounng are equivalent for any 6 > 0.
1) There exist ¢1,6 > 0 such that for all f € FN L,

IF138 < e (ECF, 1) + SIFIRIANEY, (Nash)

where || f|l, := ([x [f[Pdp)"/?.
2) For allt > 0, P,(L') C L* and it is a bounded operator. Moreover, there exist cz,0 > 0 such that

| Pl 1=00 < cze5tt_9/2, YVt > 0.
Here || Py||1 00 @5 an operator norm of P, : L' — L°°.

In order to prove the theorem, we prepare a lemma. For the lemma, £ should merely be a
symmetric closed form on a Hilbert space H. Set £1(-,-) = £(-,-) + (+,+), where (+,-) is the inner
product of H. (Then (£, F) is a Hilbert space.) Throughout this subsection, we refer to [Kig].

Lemma 2.2

a) For all f € Dom(—A), E(P.f, P.f) is monotonically decreasing on t > 0 and limy o E(P,f, P, f) =
£/ f).

b) {P:} is a strongly continuous semigroup on (€1, F).

c) Assume that {P;} is a Markovian semigroup on L*(X, ). Then ||Pif||y < ||f|lL for all f € L*NL'.

PrROOF. a) Note that A is the generator of {P,}, so that P,f € Dom(—A). Note also that for
f,g9 € Dom(—A),

P

E(PL9) = —(Pif,Ag) = —(ARS,g) = —lim( =2 P ) = ~ (P 1 )

= —(PAf,9)=—(Af, Pg) =E(f, Prg). (2:3)

Now let u(t) = E(Py2f, Pyj2f). Then, using (2.3), u(t) = £(f, P.f) = —(Af, P,f), so that v/(t) =
—(Af, AR f) = —(Af, BAf) = —(PyeAf, PyoAf) < 0. Thus, u(t) is monotonically decreasing.
Since {P;} is strongly continuous, u(t) = —(Af, P.f) = —(Af, f) = E(f, f) as t | 0.

b) The semigroup property is clear, so we first prove the contraction property. Note that Dom(—A)
is dense in F w.r.t. &;. For any f € F, take {f,} C Dom(—A) so that f, — f in £;. By
a), E(Pyfn, Pifn) < E(fn, fn) and {P,f,}, is an E-Cauchy sequence. Since {P,f,}, is an H-Cauchy
sequence as well, and P, f,, — P,f in H, it follows that P, f,, — P,f in &;. Hence E(P,f, P,.f) < E(f, f)-
Strong continuity of { P;} can be proved using a) and the approximation by a sequence in Dom/(—A).
c) First, we show that if 0 < f € L?, then 0 < P,f. Indeed, if we let f, = f - 1;-10,4)), then f, — f
in L2. Since 0 < f, < n, the Markov property of {P;} implies that 0 < P,f, < n. Taking n — oo,




we obtain 0 < P,f. Using this, we have P,|f| > |P,f|, since —|f| < f < |f|- Using this fact and the
Markov property, we have for all f € L2 N L' and all Borel set A C X,

(|F)tf‘a 1A)2 < (B|f|, 1A)2 = (|f|,P)tlA)2 < ||f||la

where (f,9)2 == [y f(z)g(x)du(z) for f,g € L. Hence we see that P,f € L' and || Pf|, < ||f|:- O
PROOF OF THEOREM 2.1: 1) = 2) : Let f € L> N L' with ||f||; = 1 and u(¢t) := (P,f, P,f)s. Then,

u(t + h’})L — u(t) - %(Pt—i—hf + Pf, Pinf — Pof)o = (Poynf + Bif, wh
MY o(P,f, AP, f), = —2E(P.f, P.f).

Hence u'(t) = —2E(P,f.P;f). Now by 1),
2u(t) 7 < ey (= (8) + 20u(®))[|Pf 1" < en(—u'(2) + 26u(?)),
because ||P;f||;1 < ||f][i =1 (by Lemma 2.2 ¢)). Thus,
2(e™ Wby (1)) 120 < 267y (1) 120 < —c¢y (e7 (1))

Set v(t) = (e %*u(t))~2/?, then we obtain v'(t) > 4/(c,6). Since lim; o v(t) = u(0)~2/? > 0, it follows
that v(t) > 4t/(c16). This means u(t) < cye?*t%/2 where ¢, = (c,0/4)%/?. Hence

[P.fll2 < ese®t 4| f]]1, VfeL?’nL,

which implies || P;||12 < cse?t~%4. Since P, = Pyj3 0 P,y and ||P,o||152 = || Pi/2||l2—00, We obtain 2).
2) = 1): Let f € FN L' Then, for 0 < e <t

0

t
(e_dtf)tfa f)? = (6_6€P€f: f)2 + / (g(eidsps'f)’ f)QdS

¢
= (RS D= [T DR, s
Using Lemma 2.2 b),

6_68((51 - A)Psf7 f)2 = 56_68(Ps/2f7 Ps/?f)? - 6_65(P5/2AP8/2f7 f)2
= 56_68(Ps/2f, Pyjaf)a + e_dsg(Ps/zfa Pyjaf)e < 6| fll5+E(f, f)-

On the other hand,
(Pof, P2 S 1P ool £ < eae™ "2 117,

where we used 2) in the second inequality. Combining these, we have
call FIF0 > (e7Pef, )2 — (t = ) (IIfII3 + E(F ).
Letting € | 0, we obtain
call FI3E 2 +t@IFIE+EF ) 2 NflIE - vE>o.

Now taking t = {cs|| fII}/ (Ol £13 + £(f, £))}*#+?, we obtain 1). O



Corollary 2.3 Suppose the Nash inequality (Theorem 2.1) holds. Let ¢ be an eigenfunction of —A
with eigenvalue A\ > 1. Then

lelloo < eaA” Iz,

where cg > 0 is a constant independent of © and .

PROOF. Since —Ag = Ap, Py = e ' = ey, By Theorem 2.1, || B||2-00 = || P2, < 187074
for t < 1. Thus

e M| ¢lloo = 1Psplloo < cat™*[lip]l-
Taking ¢t = A\~! and c¢3 = cie, we obtain the result. O

Remark. Generalizations of Theorem 2.1 are given in [28, 77] etc. In subsection 8.1, we give a
localized version of such generalizations.

2.3 The Davies method

In [31] (see also [30]), E.B. Davies gave a general method to obtain the Gaussian off-diagonal estimate
from the Nash inequality. This method also gives the explicit constant in the exponential term of
the estimates.

Let F:={h+c:he& Fypce€R}and Fy, := {p € F: e 2D (e?, e¥) < 1, e®T (e, e7¥) < pu}.
The following version of is due to Carlen-Kusuoka-Stroock ([25]).

Theorem 2.4 ([25] Theorem 3.25) Assume (Nash). Then, there is a constant ¢ > 0 such that for
each p € (0,1],

pie(z,y) < c(pt)02e BOFpty)+opt fort>0andz,y € X, (2.4)
where

E(t,z,y) == sup{|v(z) — ¢(y)| — tA(¥)* : A(¥) < oo}

with
de 2T (e?, e¥)

dp

[

AW = max | et ey )

dp
The key inequality for the proof is
EE [N e V) > p E(S7, ) — 9pAW)? [ fIIzps

which holds for all f € F and all p € [1,00) (see Theorem 3.9 [25]). Indeed, let f,(z) =
e?@[P,(e~¥ f)](x) and apply this inequality and (Nash) to

0 1 -
o IFillsy = —2pE (e f7" e o).

One then obtains a differential inequality. Handling the inequality in a suitable way (Lemma 3.21 in
[25]), (2.4) can be obtained.

Now consider the divergence operator £ =3 ", %(aij(x) %) on R" satisfying a uniform elliptic
condition; 071 < a(-) < oI for some o > 1. In this case, (Nash) holds with § =n, § = 0 and

AW)? = Slip(W)(w), a(z)Vip(x)).
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Let p = 1. Taking ¢(z) = 6 - x for some 6 € R™ in (2.4), we get
pe(z,y) < eit™exp(d - (z —y) + 2[|6]]*o1).
Taking 6 = (y — x)/(40t), we obtain

ly — x|

< ot M2 _
pt(ac,y) S0 exp( 8ot

)’

and the Gaussian upper bound is obtained.
In fact, we can get much sharper estimate. Let

dg (z,y) := sup{v/(z) — $(y) : ¥ € Foe N O(X), A¥) < 1}

This is a metric and sometimes called an intrinsic metric. By a simple computation, we see

_dg(x,y)?
E((1+p)t,z,y) = A+ )t
So, we conclude ,
n de(x,y
pla,y) < i (pt) "7 exp(~ SELY))

41+ p)t~
Remark. For the case discussed from Section 3 (when S > 2), this method does not work.

Indeed, it is known that for diffusions on ‘typical’ fractals, the energy measure is singular to the
Hausdorff measure ([47, 61]) so dg(z,y) = 0.

2.4 Moser’s arguments

In [69], J. Moser proved elliptic Harnack inequalities ((EHI) — see subsection 3.2 for definition) for
harmonic functions of some class of differential operators (uniform elliptic divergence forms). There
the famous Moser’s iteration arguments were used. He then extended the methods and proved the
parabolic Harnack inequalities in [68]. Later, the arguments were simplified in [67]. In this subsection,
we will overview his arguments.

For simplicity we give the argument for the Laplace-Beltrami operator on a Riemannian manifold
X satisfying (VD), (PI(53)) (see subsection 3.2 for definition) and with regular volume growth

cr® < p(B(z,r)) < eor®, re X, r>1.

Let p be the Riemannian measure on X, and write

fr=umy [ pau

From (PI(3)) one obtains (see [72], [73] Section 5.2) the Sobolev inequality

][ )" < clRﬁ][ VP, (2.5)

for f € C§°(B), where B has radius R > 1 and k = a/(@ — 2) where a =3V a.

Since we are now treating the Laplace-Beltrami operator, dI'(f, f) = |V f|?du for f € F. Let
u > 0 be harmonic on B (note that u is continuous in B in this case). Let v = u? for p > 0,

7



1/2 < ay < a1 < 1, B; := B(zo,a;R) and ¢ € C§°(B;) be a cut-off function for By C B;. By
“converse to the Poincaré inequality” (see Lemma 4.6 below),

Vol <Vl [ o (26)

Bl Bl

Using (2.5) with f = v and (2.6),

(][ urP)ie < c3R5][ (Vo|*> < chﬂ][ ©*|Vo]? < C4Rﬂ||V90||<2>o/ v,
B> By

By By

Taking the “classical” cut-off function ¢(z) = 2&E)we have ||[Vy||2, < ooy Thus

R(a1*a2) — a17a2)2R2'

(][ U PR < cgRP2(ay — a2)2][ u®. (2.7)
B,

B
Now, let a = (1 +27%)/2,pr = pk* and By = B(xg,arR). (Then a; — ap1 = 27%72) Set
Iy = (jékﬂuz”k)l/(?pk). Then, by (2.7) we have

Iiiq < (c;RP202R)Y/ i),
By iteration (this part is the first part of Moser’s argument), we have
I < Hf;ol(C7Rﬁ*222l)1/(2pz)10 < CSRCI(ﬂ72)IO_

Here the last inequality is due to the fact ), k! < oo and > Ik~ < oo, because k > 1. Take
k — 00. Since pp — oo and u is continuous, we have

sup  u(y) < cgRCP2 (][ u?)V ) = R~ d(2p, B).
y€B(xo,R/2) B

Thus, when 8 = 2, by the second part of Moser’s argument (which gives the comparison between

®(2p, B) and ®(—2p, B)) gives

sup u<c®(2p,B) <co®(—2p,B) <c3 inf wu
o us e (2p, B) < 2®(—2p, B) 5 pd )

and (EHI) is proved.

Remark. If 5 > 2, one still obtains an L* bound on u in B(z, R/2), but the constant now
depends on R, so that the final constant in the (EHI) will also depend on R! Similar problems would
arise if one tried other approaches, such as that in [34]. As we see, the problem arises in the first
(‘easy’) part of Moser’s argument. Instead of the linear cut-off functions, one needs cut-off functions
such that the term R®~2 in the right hand side of (2.7) disappears.

3 Framework and main theorem

3.1 Framework

We will consider two classes of spaces, namely metric measure Dirichlet spaces and weighted graphs.
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Metric measure Dirichlet spaces  Let (X,d) be a connected locally compact complete separable
metric space. We assume that the metric d is geodesic: for each z,y € X there exists a (not necessarily
unique) geodesic path 7(z,y) such that for each z € ~(z,y), we have d(z,z) + d(z,y) = d(z,y).
Let u be a Borel measure on X such that 0 < p(B) < oo for every ball B in X. We write
B(z,r) ={y : d(z,y) < r}, and V(z,7) = u(B(x,r)). Note that under the assumptions above, the
closure of B(z,r) is compact for all z € X and 0 < r < oo. For simplicity in what follows, we
will also assume that X has infinite diameter, but similar results (with obvious modifications to the
statements and the proofs) hold when the diameter of X is finite. We will call such a space a metric
measure space, or a MM space.

Now let (€, F) be a regular, strong local Dirichlet form on L?(X, u): see [35] for details. We denote
by A the corresponding (non positive) self-adjoint operator; that is, we say A is in the domain of A and
Ah=fifhe Fand E(h,g) = — [ fgdpfor every g € F. Let {Pt} be the corresponding semigroup.
(€, F) is called conservative (or stochastically complete) if P,1 = 1 for all ¢ > 0. Throughout the
paper, we assume that (£, F) is conservative. Since & is regular, £(f, g) can be written in terms of
a signed measure I'(f, g). To be more precise, for f € F, (the collection F, is the set of functions
in F that are essentially bounded) T'(f, f) is the unique smooth Borel measure (called the energy
measure) on X satisfying

Aﬁﬂ(ﬁﬁ=2ﬁﬁf@—ewiw, g€ F

where g is the quasi-continuous modification of ¢ € F. (Recall that u : X — R is called quasi-
continuous if for any € > 0, there exists an open set G C X such that Cap(G) < € and u|x\g is
continuous. It is known that each u € F admits a quasi-continuous modification % — see [35], Theorem
2.1.3.) Throughout the paper, we will abuse notation and take the quasi-continuous modification of
g € Fy without writing g. I'(f, g) is defined by

O(f,9)=5(O(f +0.f+0) ~T(f,/) ~T(0,9), frg€F.

['(f,g) is also local, linear in f and g, and satisfies the Leibniz and chain rules — see [35], p. 115-116.
That is, if f1,..., fm,9, and ©(f1,..., fm) are in F,, and ¢; denotes the partial derivative of ¢ in
the " direction, we have:

(fga )_ dr(gah)+gdr(f7 )a

AL (o(f1- -5 fm)9) =D ilf1, -, fm)d (£, 9).

=1

We call (X, d, i, €) a metric measure Dirichlet space, or a MMD space.
Let Y = (Y;,t > 0,P*, 2 € X} be the Hunt process associated with the Dirichlet form & on
L*(X, ) — see [35], Theorem 7.2.1. Since € is strongly local, by [35], Theorem 7.2.2 Y is a diffusion.

Examples. 1. If X is a Riemannian manifold, we can take d to be the Riemannian metric and p the
Riemannian measure. The Dirichlet form £ is defined by taking its core C to be the C'*° functions
on X with compact support, and defining

EUf, f) = /X ViPd, fec.

The domain F of £ is then the completion of C with respect to the norm ||f||s + £(f, f)*/?, and
dl'(f,9) =V f-Vgdpu.



2. Cable system of a graph. Given a weighted graph (G, E,v) (see Definition 2.13 below) we can define
the cable system G¢ by replacing each edge of G by a copy of (0, 1), joined together in the obvious way at
the vertices. For further details see [9] etc. Let p be the measure on G¢ given by taking du(t) = vy, dt for ¢
in the cable connecting x and y, where v, is the conductance of the edge connecting z and y; see [9]. One
takes as the core C the functions in C(G¢) which have compact support and are C! on each cable, and sets

E(f.f) = /G | (8)Pdy(t).

One use of this construction is that the restriction to G of a harmonic function h on G¢ yields a harmonic
function on G.

3. Let D be a domain in R? with a smooth boundary. Then let C = Cg(D), 1 be Lebesgue measure,
and

E(f.f) =} /D V£ Pdu.

The associated Markov process Y is Brownian motion on D with normal reflection on 0D. For the extension
of this construction to piecewise smooth domains such as the pre-Sierpinski carpet, see [10].

4. For fractal sets it is not as easy to describe £. However, let F C R? be a connected set with diameter
1, and suppose that there exists a geodesic metric d on F. Let u be the Hausdorff a-measure on F' (with
respect to d) and suppose that

ar® < p(B(z,r)) <cor®, =z €F,r>0.

Let

Npolf) = sup 1o /F /F Lt (@) F (@) — 1) 2da(@)dp(y),

0<r<1
A o(F) = {u€ L*(F,p) : Nooo(u) < 00}

There exist many fractals satisfying the above with a Dirichlet form £ on L?(F, u) for which the domain F
of £ is given by AP2 and c1No,oo(f) S E(f, f) < caNgoo(f); see [37, 60] etc.

2,007
In the particular case of the (compact) Sierpinski gasket F' = Fsg, let Fj, be the set of vertices of
triangles of side 27"; regard F,, as a graph with x ~ y if and only if  and y are in some triangle of side

27", Then for f € Aj/2 with § = log5/log 2, one has

E(, ) = ¢ Tim (5/3)" 3" (/(2) = f(w))*.

vy

Weighted graphs Let (G, E) be an infinite locally finite connected graph. We write z ~ y if (z,y) € E,
i.e., there is an edge connecting = and y. Define edge weights (conductances) pizy = ftyz > 0, z,y € G,
and assume that p is adapted to the graph structure by requiring that p;y, > 0 if and only if x ~ y. Let
fio = Y, Ky, and define a measure p on G by pu(A) =3, 4 pz. We call (G, ) a weighted graph.

We write d(z,y) for the graph distance, and define the balls

Bg(z,r) = {y: d(z,y) < r}.

Given A C G write 0A = {y € A° : d(z,y) = 1 for some z € A} for the exterior boundary of A, and let
A= AUOJA.
A weighted graph (G, i) has controlled weights if there exists pg > 0 such that for all z,y € G

mzpm z~Yy.
iz
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This was called the pp-condition in [41].
The Laplacian is defined on (G, i) by

Af(z) = ui S by () — £(2)).
Y

We also define a Dirichlet form (£, F) by taking F = L%(G, u), and

E(f,9) =35> (f(@) = fW)(9(x) — 9())piay, fr9 € F.

If f € F we define the measure I'¢(f, f) on G by setting

Talf, (@) =D (f(@) = f©)tiay-

Y~z

Let Y = {Y;};>0 be the continuous time random walk on G associated with £ and the measure . When
the natural weights are given on G, Y is called the simple random walk on G. Y waits at = for an exponential
mean 1 random time and then moves to a neighbour y of z with probability proportional to ... We define
the transition density (heat kernel density) of Y with respect to u by

q(r,y) = P*(Y; = y)/py- (3.1)

3.2 Inequalities

In this subsection, we will define various inequalities for later use. Here we state under the framework of
MMD spaces. Similar definition can be given for weighted graphs. For weighted graphs case, we will consider
only global structures, so, for example R > 1, ¢ > 1 in the following inequalities.

Let 8,8 > 2 and

B oifs<1
U(s) =Tz,(s) =<5 USS 3.2
(s) ﬁ’ﬂ() {sﬂ if s > 1. (3:2)

¥(s) will give the space/time scaling on the space X. Generalization of this time scaling factor (for instance,
simply assuming (8.1)) may be possible, but we do not pursue it here.

(I) X satisfies volume doubling (VD) if there exists a constant ¢; such that
V(z,2R) < 1V(z,R) forallz € X, R>0. (VD)

(IT) X satisfies the Poincaré inequality (PI()) if there exists a constant co such that for any ball B =
B(z,R) C X and f € F,
[ 0@ ~Todute) < covi@ [ ar(r. ) (P1(¥))

Here T = u(B)™" [ f()du(a).

(IIT) We say a function u is harmonic on a domain D if u € Fj,. and £(u, g) = 0 for all g € F with support
in D. Here u € Fj,. if and only if for any relatively compact open set G, there exists a function w € F
such that u = w p-a.e. on G. See page 117 in [35] for the definition of £(u, g) for u € Fj,. when (€, F) is
a regular, strong local Dirichlet form. Functions in F are only defined up to quasi-everywhere equivalence;
we use a quasi-continuous modification of u. X satisfies the elliptic Harnack inequality (EHI) if there exists
a constant c3 such that, for any ball B(x, R), whenever u is a non-negative harmonic function on B(z, R)
then there is a quasi-continuous modification % of w that satisfies

sup @ <c3 inf 4. EHI
B(z,R/2) B(z,R/2) (EHI)

11
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Figure 1: Parabolic Harnack inequality

Note that by a standard argument (see subsection 9.3) (EHI) implies that 4 is Holder continuous.

(IV) Let Q = Q(zo, T, R) = (0,4T) x B(zg,2R) =: I x Bag. Let u(t,z) : Q — R.

o We define u; = % € L?(dt x u1) as the derivative in the Schwartz’ distribution sense. That is, we define
ut to be the function f in L?(dt x p) so that for any function g : @ — R such that g(z,-) € C%(0,47T)
for each = € B(z9,2R) and g; = % € L2(dt x i), then

/Q(f(a:,t)g(x,t) (e, )i (2, 1)) dt dyu(z) = 0.

Let H(I — F*) be the space of functions v € L?(I — F*) with the distributional time derivative
ug € L?(I — F*) equipped with the norm

(] Tt B+ e, ) ) ™

Here we identify L2(X, ) with its own dual and denote the dual of F by F*. So, F C L*(X,u) C F*
with continuous and dense embeddings.

Let F(I x X) = L?(I — F) N H(I — F*) be a Hilbert space with norm
1/2
Jull ey = (] Tt e )

We define Fi,.(Q) to be the set of dt ® du-measurable functions on @ such that for every relatively
compact open set D CC Byg and every open interval I’ CC I, there exists a function u' € F(I x X)
with u =« on I' x D. We define

Fe(Q) :={u € F(I x X) : u(t,-) has compact support in Byg for a.e. t € I}.

We say a function u(t,z) : @ — R is a solution of the heat equation in @ if u € Fj,.(Q) and

/J[/f(t,w)ut(t,w)u(dx) FE(F()ult, D]t =0, VT CC L, Vf € Fu(Q). (3.3)

X satisfies the parabolic Harnack inequality (PHI(¥)), if there exists a constant ¢4 such that the following
holds. Let zp € X, R > 0, T = ¥(R), and u = u(¢,z) be a non-negative solution of the heat equation in
Q(zo,T, R). Write Q_ = (T,2T) x B(zo,R) and Q4+ = (3T,4T) x B(zg, R); then there exists @ = u(t, z)
such that @(t,-) is a quasi-continuous modification of u(t,-) for each ¢ and

sup @ < cg4 inf 4. (PHI(Y))
Q- Q+
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Given this (PHI(¥)), a standard oscillation argument implies that @ is jointly continuous.

Remark. In the case of general MMD spaces we can only define harmonic functions up to quasi-
everywhere equivalence. This is why we needed to be careful in our definitions of (EHI) and (PHI()).

(V) Let A, B be disjoint subsets of X. We define the effective resistance R(A, B) by

R(A,B)"! = inf{/ dU(f,f):f=0onAand f=1o0nB, f e ]—"}. (3.4)
X
X satisfies the condition (RES(W)) if there exist constants c1, co such that for any o € X, R > 0,
Y(R) Y(R)
———— < R(B R),B 2R)%) < gt RES(¥
1 V(.T(),R) = ( (iE(), )’ (.’L'(), ) ) = CQV(.’L‘O,R) ( ( ))

(VI) X satisfies (CS(W)) if there exist 6 € (0, 1] and constants c1, c2 such that the following holds. For every
zo € X, R > 0 there exists a cut-off function (= ¢z, r) with the properties:

(a) o(z) > 1 for x € B(zg, R/2).
(b) ¢(z) = 0 for z € B(xg, R)".
(c) le(x) = ¢(y)| < er(d(z,y)/R)’ for all z.y.
(d) For any ball B(z,s) with0 < s < R and f € F,
2 26 -1 2
L faea <atm? ([ agneee [ ra) (35

Remarks. 1. We call (3.5) a weighted Sobolev inequality. It is clear that to prove (3.5) it is enough to
consider nonnegative f.
2. Suppose (CS(¥)) holds for X, but with (a) above replaced by

o(z) > 1 for ¢ € B(xp,R),

for some § < 1. Then an easy covering argument (using (VD)) gives (CS(¥)) with § =

5-
3. Let A > 1. Suppose that (CS(¥)) holds, except that instead of (3.5) we have
[ pae) <aer?([  agnsueT [ P),
B(z,s) B(z,As) B(z,\s)

Then once again it is easy to obtain (CS(¥)) with A = 2 by a covering argument.

4. Any operation on the cut-off function ¢ which reduces dI'(y, ¢) while keeping properties (a), (b) and
(c) of (VI) will generate a new cut-off function which still satisfies (3.5). We can therefore assume that any
cut-off function ¢ satisfies the following: (a) 0 < ¢ < 1. (b) For each ¢ € (0,1) the set {z : p(x) > t} is
connected and contains B(zg, R/2). (c) Each connected component A of {z : p(z) < t} intersects B(z, R)°.
5. Note that if (CS(¥)) holds for ¥ = ¥ 5, then (CS(¥z 4)) holds if 8’ > § and B’ < B.

(VII) For (t,7) € (0,00) x [0,00), let

B\ 1/(B-1)
A ={(t,r):t<1Vr}, Ay={(Er):t>1Vr}, and gﬂ(r,t)zexp<—<%) )
We say X satisfies (HK(W)) if the heat kernel pi(x,y) on X exists and satisfies

c1gz(ced(z,y), t) csgp(cad(z,y), 1)

= < yy) < —, 3.6
for z,y € X and t € (0,00) with (¢,d(z,y)) € A1, and
c19p(c2d(z,y), 1) c3gp(cad(z,y),t)
< plz,y) < , 3.7
V (2, t1/8) <piz,y) < V(z,t1/8) (3:7)
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for z,y € X and t € (0,00) with (¢,d(z,y)) € As.
Let h(r) = ¥(r)/r. It is easy to see that (HK(¥)) is equivalent to the following:

c1 cod(z,y) c3 cyd(z,y)
Ve, 0-1(2)) P ( - h—l(t/d(w,y))) <pi(z,y) < Ve, 0-1(t)) P ( - h—l(t/d(m,y)))’

for all z,y € X and t € (0,00) where we let d(z,y)/h~'(t/d(z,y)) = 0 if d(x,y) = 0. We sometimes refer
the first inequality of (3.8) as (LHK(¥)) and the second inequality of (3.8) as (UH K (V)).

Remark. To understand why the crossover takes the form it does, it is useful to consider the contribution
to pi(z,y) from various types of paths in X. Let r = d(z,y). First, if 0 < ¢ < 1 and r < 1 then the behaviour
is essentially local.

If r > ¢ then we are in the ‘large deviations’ regime: the main contribution to p;(z,y) is from those
paths of the Markov process Y which are within a distance O(t/r) of a geodesic from z to y. So, once the
length of the geodesic is given, only the local structure of X plays a role. Note that in this case the term
in the exponential is smaller than e~¢, so that the volume term V(z,t!/#)~! could be absorbed into the
exponential with a suitable modification of the constants ¢y and c¢y.

Finally, if £ > 1 and r < ¢, then the paths which contribute to pi(x,y) fill out a much larger part of X:
those which lie in B(z,t"/#) if r < t'/#, and those which are within a distance O(t/r?~1) of a geodesic from
z to y in the case when t1/8 <r<t.

(3.8)

(VIII) We say X satisfies (VD)o if (VD) holds for z € X, 0 < R < 1. Similarly we define (PI(5))ioc,
(EHD)1oc, (CS(B))10c and (PHI(B))1oc by requiring the conditions only for 0 < R < 1. For (HK(B))0c we
require the bounds only for ¢ € (0,1) - so only (3.6) is involved. The value 1 here is for simplicity: each
of the local conditions implies an analogous local condition for 0 < R < Ry for any (fixed) Ry > 1 — see
Section 2 of [46].

Finally, we introduce two local notions which do not include any scaling order.
(IX) (a) We call ¢ a cut-off function for A; C Ay if p =1 on A; and is zero on A§.

(b) We say X satisfies (PI)jo if for each ¢; > 0, there exists ¢z > 0 such that

/B (/(2) - F)?du(z) < o /B ar(f. f)

for any ball B = B(z,c1) C X and f € F.
(c) We say X satisfies (CC))q if for every zp € X, there exists a cut-off function p(= ¢g,) for B(zg,1/2) C
B(xp,1) such that

/ dT (¢, ¢) < 3V (20, 1),
B(zo,1)

where c3 > 0 is independent of zy and .

Remark. (CC) stands for ‘controlled cut-off’ functions. Clearly (PI(5))ioc for any 8 > 2 implies (PI)joc
and (CS(B))1oc for any B > 0 implies (CC)iqe-
(X) X satisfies the condition (E(¥)) if for any zg € X, R > 0,

1T (R) < E®[rp (0 )] < 2% (R), (E(D))

where 74 = inf{t > 0:Y; ¢ A}, Y; is the strong Markov process associated to the Dirichlet form (&, F),
and E® denotes the expectation starting from the point zy. The first inequality in (E(P)) is referred as
(E(¥)>) and the second is referred as (E(¥)<).

Remark. The conditions (VD), (EHI) and (PHI(¥)) for graphs are defined in exactly the same way as
for manifolds; see [9]. The definitions of (PI(¥)) and (RES(¥)) are also the same. For the bound (HK(¥))
we only require (3.7). The condition (CS(W)) is also the same; the weighted Sobolev inequality (3.5) takes

the form

> f@Teae)@ <alm”( Y TelhN@+UH T Y wiE@)?).

z€Bg(71,5) z€Bg(71,25) z€Bg(x1,25)
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It is easy to check that (PI)j,. and (CC)oc hold for any weighted graph with controlled weights. In fact,
(PI(B))10c and (CS(B))1oc hold for any choice of 3 > 2 on such graphs, since it is irrelevant to treat R < 1
for graphs.

We summarize the conditions we have introduced:

(VD) Volume doubling

(PI(T)) Poincaré inequality

(EHI) Elliptic Harnack inequality
(PHI(Y)) Parabolic Harnack inequality
(RES(¥)) Resistance exponent

(CS(¥)) Cut-off Sobolev inequality
(CC Controlled cut-off functions
(HK(7)) Heat kernel estimates

(E(D)) Walk dimension

When 8 = 3, we would write (...(3)) instead of (...(¥)), for instance (PI(3)) instead of (PI()).

3.3 Main Theorems

Our main theorem in this section is the following.

Theorem 3.1 Suppose that X is either an infinite connected weighted graph with controlled weights, or a
MMD space. The following are equivalent:

(a) X satisfies (PHI(T)).

(b) X satisfies (HK(V)).

(c) X satisfies (VD), (PI(¥)) and (CS(¥)).

(d) X satisfies (VD), (EHI) and (RES()).

(e) X satisfies (VD), (EHI) and (E(¥)).

Stability We now discuss the stability of (PHI(¥)). We will actually discuss two kinds of stability.

Definition 3.2 A property P is stable under bounded perturbation if whenever P holds for (5(1),.7-'), then
it holds for (€, F), provided

ci€D(f, 1) < ED(f, 1) < 2€D(f,f),  forall f € F. (3.9)
The following result is due to Le Jan ([64], Proposition 1.5.5(b)). A simple proof is given in [66] p. 389.

Lemma 3.3 Let X be a MMD space. Suppose (E(i),}"),i = 1,2 are strong local regular Dirichlet forms that
satisfy (3.9). Then the energy measures T') satisfy

adlO(f, £) <dTO(f, f) < cudTD(f, f),  for all f € F.

It is immediate from Lemma 3.3 that the conditions PI(¥) and CS(¥) are stable under bounded
perturbations. So we deduce:

Theorem 3.4 Let X be a MMD space. Then (PHI(¥)) and (HK(¥)) are stable under bounded perturba-
tions.

The second kind of stability is stability under rough isometries.
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Figure 2: S.G. graph and its image by a rough isometry

Definition 3.5 For each i = 1,2, let (X;,d;, pi) be either a metric measure space or a weighted graph. A
map ¢ : X1 = Xo s a rough isometry if there exist constants ¢; > 0 and co,c3 > 1 such that

X = U Ba, (p(z), c1),
reXq

¢ H(di(2,y) — 1) < da((2), 9(y) < e2(di(=,y) + 1),
and
¢y ' 1 (Bay (z,¢1)) < pa(Ba, (0(2), 1)) < capr(Ba, (2, ¢1))-
If there exists a rough isometry between two spaces they are said to be roughly isometric. (One can check
this is an equivalence relation.)

This concept was introduced by Kanai in [53, 52]. A rough isometry between X; and X5 means that the
global structure of the two spaces is the same. However, to have stability of Harnack inequalities, we also
require some control over the local structure. In the case of graphs it is enough to have controlled weights,
but for metric measure spaces more regularity is needed. (In [53, 52] this local control was obtained by
geometrical assumptions on the manifolds).

The following theorem concerns the stability of (PHI(¥)) under rough isometries.

Theorem 3.6 Let X; be either a MMD space satisfying (VD)o and (Pl or a graph with controlled
weights, and suppose there ezists a rough isometry ¢ : X1 — Xo. Let U;(s) = 3*3@'1{551} + sﬂl{szl}.
(a) Suppose that Xo satisfies (PI(B2))oc. If X1 satisfies (VD), (CC)ioc and (PI(¥1)) then Xo satisfies (VD)
and (PI(Vy)).
(b) Suppose that Xo satisfies (CS(f2))oc- If X1 satisfies (VD) and (CS(¥1)) then Xo satisfies (VD) and
(CS(T3)).
The proof of thie theorem is given in [14] ([44] for the case of weighted graphs).

By this theorem together with Theorem 3.1, we see that (PHI(U)) is stable under rough isometries,
given suitable local regularity of the two spaces.
Examples 1) It is known that the simple random walk on the S.G. graph (the left of Figure 2) satisfies
(HK(log5/log2)) for t > 1. The graph on the right of Figure 1 is an image of the S.G. graph by a
rough isometry. So the simple random walk on the graph also satisfies (HK (log5/log2)), and thus satisfies
(PHI(log5/log?2)) for R > 1.
2) Figure 3 is a 2-dimensional Riemannian manifold whose global structure is like that of the S.G.. This
can be constructed from the left of Figure 1 by changing each bond to the cylinder and putting projections
and dents locally. The diffusion corresponding to the Dirichlet form moves on the surface of the cylinders.
Using Theorem 3.6, one can show that any divergence operator £ = Zi =1 a%i(aij(x)%) on the manifold
which satisfies the uniform elliptic condition enjoys (HK (2)) for t < 1V d(z,y) and (HK (log 5/ log?2)) for
t>1Vvd(z,y).
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4 Proof of Theorem 3.1

In this section, we will give the proof of the key part of the theorem. The proof of (b) < (a) and (d) = (e)
will be given in Appendix 2 (Section 9). Recall that h(r) = ¥(r)/r. We give some inequalities.

Cy
<t . DUHK(¥
P (rp(ap < ) < Cyexp ( - %) Vi€ X,rt> 0. (ELD(¥))
Cy
> 4 . DLHK(¥
pt(x’x) - V(.’E,\I’_l(t))’ V.Z‘EX,t>O ( ( ))
Cs Va,y € X,t >0 with U(d(z,y)) < Cst. (NLHK (7))

pi(z,y) > ma

4.1 Proof of (e) = (b)

This is one of the most important part. Note that the existence of the heat kernel (especially the continuous
one) is highly non-trivial in this general setting. With extra work, we can prove the existence, but here we
will assume it to avoid the proof (which is already quite involved) more complicated.

For the proof, we first prove the following.

Proposition 4.1
(VD) + (DUHK (V)) + (EHI) + (E(¥)) = (HK(7)).

This proposition will be proved through several steps.
STEP 1: PROOF OF (E(V)) = (ELD(¥)). We first give the following key lemma due to Barlow-Bass.

Lemma 4.2 Let {{;} be non-negative random variables. Suppose there exist 0 < p < 1 and a > 0 such that
P(& <tlo(€1,--,&i-1)) <p+at,  VE>0.
Then,
ant 1

n 1/2
log P3¢ <t) < 2(7) ~nlog

i=1
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PrROOF. We follow [7]. Let n be a random variable with distribution P(n < t) = (p + at) A 1. Then,

(1-p)/a
E(e 6o (€1, -+, 6im1)) < Be M =1p +/ e Madt <p+a L.
0

So,
n
P(Z §<t) = Ple Timb > M) < Mpe ATk
i=1
< e)‘t(p +ad )" < p"exp(\t + %)
The result follows on setting A = (an/(pt))l/Q, -

PROOF OF (E(V)) = (ELD(¥)). We first prove that there exists 0 < ¢; < 1 and ¢ > 0 such that
P(1p(gy) < 8) <1 —c1+cas/¥(r) forall z € X, s>0. (4.1)
Indeed, by the Markov property, for each z € X we have
E* () < s+ By 5 B )] < s+ B Ly, 50 B TB(x, 20)- (4.2)
Applying (E(¥)) and using the doubling property of h, which is due to the definition of ¥, we have
c3VU(r) < s+ csU(2r) P (Tp(ar) > 8) = 8 + 5V (r)(1 — P*(T(z,) < 8))- (4.3)

Rearranging gives (4.1).
Next, let [ > 1, b = r/l, and define stopping times o;, i > 0 by

00 =0, o0iy1 =inf{t > 0;:d(Y,,,Y:) > b}.

Let & = 0, — 0i—1, © > 1. Let F; be the filtration generated by {Y; : s < ¢} and let G,,, = F,,,. We have
by (4.1)
P(&1 < 1Gi) = PYi (1p(y,, 5 < 1) < p+ ot/ T(b),

where 0 < p < 1. As d(Y,,,Ys,,,) = b, we have d(Y¥y,Y,,) < r, so that o7 = Zézl & < T(ve,r)- S0, by

Oi+1 =
Lemma 4.2,
It It
log P° <) <2 V=22 _log(1/p) = V2l
og (TB(.’E,'I‘) = t) > 4p (\IJ(T/Z)) l Og( /p) 06(\11(7'/1)) C7l
Now take Iy € N the largest integer [ that satisfies
crl /2 > cq( t )12, (4.4)

U(r/l)

This is equivalent to 7/l > h~'(cst/r) where cg = 4cZ/c2. Note that if r < h™!(cgt/r), then (ELD(T))
clearly holds by taking ¢; > 0 large, so we may assume that (4.4) holds for small [ € N. Then

Iy < <lp+1, and logP*(1p(,) <t) < —crlo/2.

h=1(cgt/r)
We thus obtain (ELD(T)).

STEP 2: PROOF OF (VD) + (DUHK(V))+ (ELD(¥)) = (UHK(V)). Fix ¢ # y and ¢t and let 7 :
d(z,y), e <r/6. For a € X, set Be(a) = {b € X : d(a,b) < €}. Let iz = p|p, (), A1 = {2z € X : d(2,2)
d(z,y)} and A2 = X — A;. Then

IA IO

Pl (Y, € Be(y)) = PM(Y; € Be(y),Y: € A1)
+PF= (Y, € Be(y),Y: € Ay) =1 + .
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Now, letting 7 := Tp(4,./2), We have

2

< Phe(r <t)2) sup P22, 2) W(Be(y))-
2€B(z,r/2)UBc(y)

_ t _
I, < PR(Y,€Bi(y),7 < 2) = B (Lcys /B( P (Ve w)dnw)
e\Y

For z € B¢(z), by (ELD(¥)),

. t cor
P*(Tg(zr/3) < 5) < c1 exp ( - #t/r»
Thus,

s CI(zEB(mj}lZI;UBE(y)pt/ 262 uB B e - %)

For I;, by the symmetry of pi(x,y),
Ph=(Y; € Be(y),Y% € A) =P (Y € Bf(m),Y% € Ay)
which is bounded in exactly the same way as I2,where z and y are changed. Adding the bounds for I; and

127

Pl (Y, € Bo(y)) < o1 sup Pi2(2,2) ) 1(Be(@))u(Be(y)) exp ( — —o— ).
2€ Bz, /2)UB(y,r/2) h=1(t/r)

By (DUHK (T)) and (9.1),

c3 (r—l—\Ill(t))a.

sup pi/2(z,2) < T

2€B(x,r/2)UB(y,r/2) V(z, 01(1))
If U(r) < t, this is bounded by ¢,V (z, U1(¢))~L. If ¥(r) > ¢, then, for each e > 0, there exists ¢, > 0 such
that o100
r+ U (1)\@ €r
KL . 22 - ) <ec.
( T1(¢) ) P ( h*l(t/r)) = e

This is due to the following fact; M = r/U¥ () is equivalent to h(r/M) = tM/r, so that M < r/h~*(t/r).
In any case, we obtain

PP (Y, € Bly)) < g g iBew) exp (= 517 )-
Dividing both sides by u(Be(z)), u(Be(y)) and using the continuity of p:(z,y) gives (UHK (¥)). O

STEP 3: PROOF OF (VD) + (ELD(¥)) = (DLHK(¥)). Using (ELD(¥)) we have that

P(Yi ¢ B(a,r)) < Plrpar) <1) < erexp ( - %)

Hence by choosing r such that c3U(r) <t < ¢4 ¥(r) for some c3,cs > 0, we have
P*(Y, ¢ B(z,7)) <cs < 1.

Thus P*(Y; € B(z,r)) > 1 —¢5 > 0. By Cauchy-Schwarz,

(1—¢5)? < P*(Y; € B(a,7))* = (/ pi(x, 2)du(2))? < V (2, 7)par(, ).
B(z,r)

Now, using the lower bound of our choice of ¢ and (VD), we obtain the result. O
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Remark. By the same argument, we can obtain th following slightly stronger conclusion; Assume (V D)
and (ELD(¥)). Then, there exist c¢1,co > 0 such that

pr

C1

"2 V)

Vz e X,R>0,t € (0,c2¥(R)]. (4.5)
STEP 4: PROOF OF (VD) + (DUHK (¥)) + (EHI) + (E(¥)) = (NLHK(¥)). We follow the arguments in

[40, 42]. Fix z € X, t > 0 and set R := U !(¢/¢) where ¢ > 0 will be chosen later. We can assume ¢ < cp
where ¢ is given in (4.5). Hence, by (4.5)

C1

B > 4.

Yo (.’E,x) il V(.’E,\Pil(t))’ ( 6)

where B := B(z, R). Set f(y) = 0;pP(z,y). Applying Proposition 9.9 to pZ, we have, for y € B,
2 2
W) < TP 2008, (4,9) < 53/ (o, 0)pig2(v,v)-
By (DUHK (7)), we have
C1
< - -

pt/Q(‘T’x) — V(.’I:, @_l(t))j

and
c1 c1 V(z, T7(t))
) < <
P00 S @) S Vi v ) Vi ¥ (0)
¢l d(z,y)\o _ a(l+e)”
< 1 < — = B
V2, U(1)) ( " ‘1”1(75)) = V(z, ¥ ()’ wep
for some «, &’ > 0 where we used (9.1) and the definition of R and ¥. Hence, by (VD), we have
62(1 _I_g—a’)a/Z
<= B. 4,
10 < Bl e (4.7

Define u(y) = pP(z,y). Note that d;u = Agu and the Green operator G? is a bounded operator in L?(B)
and GB = (—Ap)~!. Thus, u = ~GB(Ou) = ~GPf. Let v > aa//2 and apply Proposition 9.6 with £7+!
instead of €. Then, there exists § > 0 such that for any 0 < r < R,

Oscp(garyu < 2(E(z,7) + " E(z, R)| floo-
By (E(7)), we have E(z,7) < c3¥(r) and E(z, R) < c3¥(R). Estimating ||f||cc by (4.7), we obtain

T(r) + T U(R)  cq(l + e ¥)/?
¢ CV(z, TL(1)

OSCB(z,(;,«)’u, <

By definition of R, we have
71U (R)
t

Choose r by the equation ¥(r) = &7T1¥(R), which implies, by definition of ¥, r > §'R for some §' > 0.
Hence, we obtain

=¢£7.

2¢4e7(1 4+ 6“"’)"‘/2
B 4
OSCyEB(:L‘,JJ’R)pt (CC,y) < OSCB(;C,(ST)'U’ < V(.T, \P_l(t)) : (48)

By the choice of v > 0, e7(1 + ¢ % )*2 — 0 as e — 0. So, choosing ¢ small enough and combining (4.8)
with (4.6), we conclude that

c1/2

) B !

pe(z,y) > pf (z,y) >
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which proves (NLHK (7)). O

STEP 5: PROOF OF (VD) + (NLHK(V)) = (LHK(¥)). First, since h(0) = 0, lim;_,o0 h(t) = 0o and h is
increasing, for all t > 0 and z # y € X, there exists g := &(¢,d(x,y)) > 0 such that

cit < h(eg)d(z,y) < caot. (4.9)

Since there is nothing to prove when ¥(d(z,y)) < Cst due to (NLHK(¥)), we will consider the case
U(d(z,y)) > Cgt, which means ¢y < c3d(z,y) for some c3 > 0. From now on, we take € := e(cit, d(z,y))
where ¢, € (0,1) will be chosen later. Since ¢ < gy, we still have ¢ < c3d(z,vy).

For ¢4 > 2¢3 V 1, take N € N such that

03d($,y) S N S C4d($,y)’ (410)
€ €
and let {z;}Y, be such that zo = z,zy = y and d(z;,z;;1) < e fori = 0,1,---,N — 1. Such a sequence
i=0 +

exists by the choice of N and by the fact that d is a geodesic metric. We then have

n(z,y) = /X /X Py (@ 21)pe (21, 22) -+ Payiy (a1 9)da(21) - sz 1)

v

[ [ e mm )y e y)dia) - duay-). (@41)
B(z1,¢) B(rn-_1,€))
Clearly d(zi, ziy+1) < 3e. Now, by (4.9) applied to € and by (4.10), we have
1/c1c3Cxt (02040*
<e<
() e (F),
By definition of ¥, taking c, small, we have ¥~ !(cocscit/N) < (Cg/3) ¥ 1(t/N), so we conclude

cst Cs t
<e< — . .
() 2o v (1) w
Hence, by (NLHK (¥)), (VD) and (4.12), we have

Ce C7 C8

pun (i, Zig1) 2 V (2, U=1(t/N)) = V(zi, U=1(t/N)) S V(zi€)

Therefore, it follows form (4.11)

N-1 CN
pi(z,y) > Va5 1(/N)) 11;[1 V(:cj,e) - V(wi,e) > V(a:,\I’_Sl(t/N))
exp(—coN) S exp(—ciod(z,y)/€)
V(z, o (t) = V(z, T ()

On the other hand, by (4.9) applied to €, we have h~!(t/d(x,y)) < c11¢, so that

d(z,y) < d(z,y)
e~ hTNt/d(z,y))

We thus obtain (LHK (7)). a

Combining Step 1 -5, the proof of Proposition 4.1 is completed.
Proposition 4.3

(VD) + (EHI) + (E(¥)) = (DUHK (7).
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The proof is given for the case of weighted graphs in [41] and for the case of MMD spaces in [40]. Since the
proof is long, here we will additionally assume (PI(¥)) and prove the result. (PI(¥)) implies (FK(¥)) —
see subsection 8.1 for the definition, so we shall prove the following.

PROOF OF (VD) + (FK(9)) + (E(V)) = (DUHK(¥)). Fixzpe X andlet 0 <7 <p' <p < R. If we
denote B; := B(xy, s), then, as in [36] (12.6), we have

B ,
sup p;"(z,y) < sup p,” (z,y) +2 sup P (z0,t/2) sup sup pPR(z,y),
T,y€ By T,y€B,, TEBy t/2<s<tz,y€B,

where we denote pB(z,t) := P*(15 < t). Using the fact (FK(¥)) = (UC(¥)) in Theorem 8.1,

B, B C1

sup p, 7 (z,y) < sup p,"(z,y) < 3 vt < ¥(p).
z,yEBp/ T,y€B, (m'Oa )

By (E(¥)) and (E(¥)) = (ELD(¥)) (Step 1 above), for z € B,

/ 1 t
B, B(z,p'—r) - ;o -1
< < > —
if M is large. This is the case if
p—r>MI(1) (4.13)

and p' is sufficiently close to p. Noting that the function s SUD; ye B, pBR(z,y) is non-increasing, we
obtain

C1 C1

1
Bg Br B
sup p; “(z,y) < +— sup sup p R(z,y) < +— sup pBR(z,y 414
2.yE By t ( ) ) V(.’Eo,t) 2K t/2<s<t 2,yEB, s ( ’ ) V(iL'O’t) 21K s9EB, t/2( ) ), ( )

for all t < U(p).
Now, for a fixed ¢ > 0, set ¢, :=t/2", n > 0 and

n—1
rme=MY U (), 1
i=0
It follows by this and the definition of ¥ that
2t
d
rn < 2M/ ()% = 1) < oo
0 S

Assume that R > I(t) so that all the balls B,, := B(xg,r,) are in Bg. Using the fact 7,41 —7r, = MT~(¢,),
which matches (4.13) and the fact ¢, < ¥(rp41), we obtain from (4.14)

Br 1 Bgr
sup p. (z,y) L 55—+ sup p z,Yy). 4.15
T,y€ By, tn ( y) V(l‘O,tn) 2K T,YyEBni1 tn+1( ) ( )
By (VD), we have
c1 < aK S---SK"cil:K” e
V(:L‘o,tn) V(x(),tn_l) V(:I?(),to) V(:I?(),t)
Thus, we have )
Br n a Br
sup p; "(z,y) < K + 57 sup p 7 (2,y).
z,yE€Bn tn ( y) V(.’L‘O,t) 2K T,YEBp 11 tn+1( )
By iteration, we obtain
n—1
Br ! % 1 n Bpr
sup p; *(z,y) < 1/2)" + (=)" sup p, %(z,y). (4.16)
Sup P, (z,9) Vizod) Z( 12)" + (5) Sup P, (z,y)



Applying (FK(¥)), Theorem 8.1 and using (4.15),

Br Br 1 c K"
sup py “(z,y) < sup p; " (z,y) < <
z,y€Bn, tn ( ’ ) z,yeBRr tn ( ’ ) V(xoa tn) V(.’EO, t) ’

since t, < ¥(R). Hence, lim;,,00(2K) ™" sup, e, pgR (z,y) = 0, and taking n — oo in (4.16), we conclude

261

Bg
sup p; *(z,y) < .
wnyBO ! V(xo’ t)

Finally, taking R — oo and noticing pf ® — pt, we obtain the desired estimate. O

4.2 Proof of (¢) = (d)

Lemma 4.4
(VD) + (PI(¥)) + (CS(¥)) = (RES(Y)).
PROOF. We first prove the following. If X satisfy (VD) and (PI(¥)), then the following holds.
c U(R)
R(B(.’Eo,R),B(:E(),QR) ) <ci—F——", Vrpe X,R>0. (4.17)
V('T07 R)

Let f be the function which attains the minimum on the right hand side of (3.4) when A = B(zo, R) and
B = B(zy,2R)". Let f = fB(wO 3R) fdu/V(xg,3R). Choose yq so that d(xg,yo) = 5R/2. Then by (9.1) we
have V (yo, R/2) > c2V (z9, R). Depending on whether f > 1/2 or f < 1/2, |f — f| > 1/2 on either B(zg, R)
or B(yo, R/2), and then using (PI(¥)) we have

Vo R) < o / (f — F)%dy < crU(R) / dr(f, )
B(z0,3R) B(zo0,3R)

= ¢4 U(R)R(B(zo, R), B(xg,2R)¢)~".

So (4.17) is proved.
We next prove the following. If X satisfy (VD) and (CS(¥)), then the following holds.
U(R)

R(B(.TO,R),B(.TO, 2R)C) Z C5m, VIL'() € X,R Z 0. (418)

(
(

~—

Let ¢ be a cut-off function for B(zg, R) given by
I* = B(z0,2R) in (3.5) we obtain

CS(¥)). Then taking f = 1, I = B(=zg,R) and

R(B(zo, R/2), B(xy, R)*)™! S/Idr(tp,w) §06\IJ(R)*1 i dqu%,

where (VD) was used in the last inequality. So (4.18) is proved. O

By Lemma 4.4, the rest is to show (VD) + (PI(¥)) 4+ (CS(¥)) = (EHI). This is the highlight of this
section. Recall the Moser’s argument in subsection 2.4. The crucial loss for the case S # 2 is in using the
bound (2.6); one needs a cutoff function ¢ such that the final term in (2.7) can be controlled by a term of
order R~?. We shall now see how the (CS(¥)) enables one to do this. (Clearly, (CS(¥)) guarantees the
existence of ‘nice’ cut-off functions ¢ = ¢, g that satisfies £(¢p, ) < ¢;¥(R)™V(z, R) for each z € X and
R>0.)

For z € X, R > 0 let ¢ = ¢, g be the cut-off function in (CS(¥)). We define the measure v = v, g by

dy = dp + ¥ (R)dL (¢, ¢).

We remark that we do not know if the measure « satisfies volume doubling. The first step in the argument
is to use (CS(¥)) to obtain a weighted Sobolev inequality. For any set J C X set

I = {y:d(y,J) < s}.
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Proposition 4.5 Let s < R and J C B(xg, R) be a finite union of balls of radius s. There exist k > 1 and
c1 > 0 such that

p()™H [ |fPRdy < C(R)u()™ [ dU(f, f) + (s/R)Pu(D)~" [ fPdy).
J Js J

The strategy of the proof is to show weighted Poincaré inequalities first and then prove the weighted Nash
inequality, which deduce the desired inequality. See subsection 9.8 for details.

The next result is the generalization of Lemma 4 of [69] to the case of a MMD space.

Lemma 4.6 Let D be a domain in X, let u be positive and harmonic in D, v = u*, where k € R, k # %,
and let n be supported in D. Suppose [}, dT'(n,n) < oo, then

/D772dI‘(v,'u) < (2;5 1)Q/D'(;Qdf(n,n).

PROOF. Let g € F be supported by D. Then if ' = Gh where h = 0 on D we have

/dF(gu',u')z/ dr (gu',u') :/ gu'hdy = 0.
D X X

Hence, approximating u by functions of the form ' we deduce that

/ dT'(gu,u) = 0.
D
Using this, and taking ¢ = n?k?u?*~2, we conclude that

/DnQdF(v,v):/ngP(u,u):—/ uwdl(g,u). (4.19)

D

Using the Leibniz and chain rules, the right hand side is equal to

—Qk/DnU dl(n,v) — (2k — 2) /DHQdF(U,U).

Thus,
2k
2
r = - T
| ) =~ [ )
20k ) 1/2 / ) 1/2
dr dr
< grog( [ raren) ([ )"
where we used Cauchy-Schwarz. Dividing and squaring, we obtain the result. O

Let u be harmonic and nonnegative in B(zg,4R). By looking at u + ¢ and letting ¢ | 0 we may without
loss of generality suppose u is strictly positive. Note that, as for a general MMD space we do not initially
have any a priori continuity for u, we do not obtain a pointwise bound in (4.20).

Proposition 4.7 Let v be either u or u™'. There exists ¢; such that if B(x,2r) C B(zo,4R) and 0 < g < 2,
then

ess supB(m,T/z)UQQ < e Vi, 2r) ! / (\If(r)df(vq, v?) 4+ v2qd,u). (4.20)

B(z,2r)
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PROOF. Let ¢y be a (regularized) cut-off function given by (CS(¥)) for B(z,r). Let h, = 1 — 27",
0<n<oo,s0that 0 = hyg < hoo = 1. For k > 0 set

or(z) = (po(x) —hx)*,  dyo = dp+ U(r)dl (o, ¢o).

Set Ay = {z : po(x) > hi}, and note that B(z,r/2) C A, C Ay C B(z,r) for every ng. We therefore have,
writing V for V(z,r),
CQV S N(Ak) S V, k 2 0.

The Holder condition on ¢ given by (CS(¥)) implies that if z € A1y and y € Af, then d(z,y) > car2 /0,
Set s, = %037‘2*’“/0, and note that ¢} > ¢427% on AZ’fH. Let {B;} be a cover of A1 by balls of radius sy/2,

and let Jyi1 = U;B;. Write Jj,, = JoH2, A} | = A%, and note that A1 C Jyy1 C Jpy C A, ;.

From Proposition 4.5 with f = vP and s replaced by s/2,

(V_l /AHI f%d’yo) 1/k

AN

(V—1 fzndv’o) 1/w

Jr+1

IN

Vo) [+ e/ [ fa)

i1
ceV ! [\Il(r) /A

By Lemma 4.6, we have the ‘converse to the Poincaré inequality’ for f = vP, which controls the first term
in (4.21).

IN

dr(f, f) + 2%k / f2dfyo]. (4.21)

!
k+1 Ag

(r) /A dr(f,f) < W(r)(e2 )2 / G20 (f, ) < es2?0(r) / G2dT(f, f)

9c+1 A’k+1 Ap

2p \2 2p \2

< 22w ( ) / 24T < 2”“(—) / 2dno.

< 27U (r) 91 Akf dl' (g, pr) < c1o o1 Akf dyo

We therefore deduce that
1/k ) 2 B
(V—1 / f2"”°d70) 5011(2 d 1) 22k =1 [ 2. (4.22)
Ag41 P — Ag

We now make an argument similar to the first part of Moser’s argument [69] mentioned in subsection
2.4. Choose ¢' > 0 such that inf 7 |¢'sx™ — %| > c19 > 0. Suppose first that ¢y = ¢’x" for some 7. Let
pn = 2qok™ for n > 0, and write

1/p
‘Pk=[H(Ak)1/ Up’“d%] "
A

k
Note that pyi1/2k = pi/2. Applying (4.22) to f = vPk+1/(25) = yPk/2 we have

. B 1/k _
= o™ [ o) <ot ia |

2k
pPE d'yo> = c132 ‘I‘ﬁk,
Ag,

k41

or y
P
Ugy1 < (0132%) k‘I/k-

Hence for every m

m
log U,, <log ¥y + Zplzl log(c132%). (4.23)
k=1
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As the sum in (4.23) converges and ess Supp(;,/2)v < imsup,,_,o Urm, we have
1/(2q0)
€ss SuPp(zr/2)V < c14¥o < ci5 (V_I/ UQqu’Yo) "
B(z,r)

Now let g € (0,2). We can take gy = ¢'s~" < q. Then by Hélder’s inequality, and Proposition 9.20 (d),

1—
v / vdy < (V7 / e / av)
Bar) Bn) Ba)

< c6 (V_1 quqdyo) qO/q.
B(z,r)

ess supB(;C,,/Q)'UQ‘I < 017V_1/ v?4dryp.
B(z,r)

By Proposition 9.20 (a) with R = s = r and (VD) this implies

Thus

ess supB(w,T/Q)UQq < c1gV(z,2r)! / (T (r)dT(v?, v9) + v*dp).

B(z,2r)
O
Recall that ¢ is a cut-off function for B(zg, R) given by (CS(¥)). We define
Q) ={z:9(z)>t}, 0<t<],
and write (1) for the interior of {z : p(z) > 1}.
Corollary 4.8 Let 1 > s>t > 0. There exists { > 2 such that if 0 < g < %,
ess supQ(S)v2q <e(s—1t) “V(zo,R) ! /( | v*dry. (4.24)
Q(t

PROOF. By the maximum principle the essential supremum of v2¢ in Q(s) is equal to an essential supremum
around a point 2’ € 0Q(s). Let n = 3(s —t), s’ = s — 2. By the Holder continuity of ¢ the sets Q(s) and
Q(s')¢ are separated by a distance of at least £ = coR(s —t)/%, so that B(z/,£) C Q(s'). By Proposition
4.7,

€ess supB($,,§/4)v2q < 03\1'(5)‘/(33,,5)1/

dT (v, v9) + 3V (2, €)1 / v?dp. (4.25)
B($’,§) B(wlvs)

Note that by (9.1) we have

V(.’B(),R) < (d(.’l?l,.’lio) + R

Vg = c4 ¢ ) <cs(s— t)_a/a. (4.26)

Using (4.25),

€ss SupQ(s)’UQq < Cﬁéwv(ﬁzlaf)_l/

dT' (v, v9) + gV (2',&)~! / v?dp.
Q(s")

Q(s")
Let

oot =(sNp—1)"
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and observe that [ dT(¢s, @st) < [5dL (@, @) for any B. Since @q > c7(s —t) on Q(s'), using Lemma 4.6,
we have the “converse to the Poincaré inequality” for v?;

/ dl'(v1,v?) < er(s— t)_2/ (p?tdf(vq,vq) <ecr(s— t)_2/ (p?tdf(vq,vq)
Q(s") Q(s") Q)

< cy(s— 1) / U (9, pst) < cols — 1) 2U(R)! / o2dy.
Q1) Q1)

Thus, noting U(£/R) = ¥(ca(s — 1)/?) < ¢y,

ess supgsv°? < en¥(¢/R)(s — t)QV(wlaf)l/ v*idy + Cllv(wlaﬁ)l/ v*ldp
Q(t) Q(t)
< V@& s- 0 [ oty
Q(t)
< a3Vi(zg, R) s —t)2°‘/0/ v2dy,
Q(t)
where we used (4.26) in the last inequality. So taking ¢; = 2 + /6 we obtain (4.24). O

Now our goal is to deduce the elliptic Harnack inequality. The following corresponds to the second part
of Moser’s arguments.
Let w = logu, and write w = V (zq, R) * fB(xo r) W dpt-

Proposition 4.9 (a) There exists c1 such that

V(.’L’(),R)
dl'(w,w) < c1———=—
sy T < 5

(b) Let 1 > s>t >0. Then
V(anR)

dy<c 12

/{IwW|>A}ﬂQ(8)

PROOF. Again, this is essentially Moser’s proof. Let ¢1(z) be a cut-off function given by (CS(¥)) for the
ball B* := B(z(,4R). So
/ dl(w, w) < c/ ©7dl (w, w).
B(z0,2R) *
Applying (4.19) with n = @1, v = w, g = ¢?/u? and D = B*, we have
| e == [ udbe/e ).
Using the Leibniz and chain rules, the right hand side is equal to
—2/ ©1dl(p1,w) + 2/ ©2dT (w, w).
* B*

Thus,
1/2 1/2
[ darww) =2 [ oo <2( [ atenen) ([ darww)”
* * B* *

where we used Cauchy-Schwarz. Dividing and squaring,
/ ©2dT (w, w) < 4/ dl (@1, ¢1)-
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Finally, using (CS(¥)) in B* with f € F such that f|p,,sr) =1 (since (£,F) is a regular Dirichlet form,
such an f exists) and (VD) we deduce that

/* T (o1, 1) < c(R) 'V (w0, R).

(b) By Chebyshev’s inequality, Proposition 9.20 (b) and (a)

A2 / &y < / w — w%dy
{lw—w|>A}NQ(s) {lw—w|>A}NQ(s)

/ o — wdy < / lw — wdy
Q(s) B(zo,R)

csU(R) / AT (w, w) < ¢V (z0, R).
B(z0,2R)

IN

IN

O

In order to get the Harnack inequality the argument in [68] required a generalization of the John-

Nirenberg inequality with a complicated proof. Bombieri [22] found a way to avoid such an argument for

elliptic second order differential equations. Moser (Lemma 3 in [67]) carried the idea over to the parabolic

case and Bombieri and Giusti (Theorem 4 in [23]) obtained the inequality in an abstract setting. (See also

Lemma 2.2.6 in [72].) This argument can be applied to our setting (with suitable modifications) and we can
show that Corollary 4.8 and Proposition 4.9 (b) give

€ss SUPp(y,,r/2) logu < c1. (4.27)

(For the sake of completeness, we will give the proof of (4.27) in subsection 9.9.) Let v = u~!. The same
argument implies ess SUpg(z, r/2)10gv < ci1, or ess infp(y, r/2)logu > —ci. Combining we deduce

e~ <ess inf(y, r/2)u < €S8 SUPp(5,, p/2)U < €.
We thus obtain the following.
Theorem 4.10 There ezists ¢; such that if u is nonnegative and harmonic in B(zg,4R), then
€SS SUPB(go,R/2)U < C1€8S B (5 R/2)U-

PROOF OF (c¢) = (d). As we mentioned in the beginning of this section, it is enough to show (VD) +
(PI(¥)) + (CS(¥)) = (EHI). But given Theorem 4.10, (EHI) can be proved as in subsection 9.3 O

4.3 Proof of (b) = (c¢)

In this subsection, we will use the equivalence (a) < (b) which is proved in Appendix 2 (Section 9).
Assuming (b) or equivalently (a), (VD) and (PI(¥)) hold by standard arguments (which are partly
discussed in subsection 9.7). So, we will prove (PHI(T)) (equivalently (HK(¥))) = (CS(¥)).
Let D = B(zo, R —¢) where ¢ < R/10, and A > 0. Let Y be the process associated with the Dirichlet
form (&, F). Let Gf be the resolvent associated with the process Y killed on exiting D; that is,

GPf(z) = B* /0 " e My,

for bounded measurable f, where p = inf{t : Y; € X — D}. Let pP(-,-) be the heat kernel of Y killed on
exiting D. Then the Green kernel of Gf is given by

o0
oD (a,y) = /0 NP (2, y)dt.

We use the Green kernel to build a cut-off function ¢.
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Lemma 4.11 Let o € X. Then there exists § > 0 such that if A = cg¥(R)™!

U (R)
X < Cro— B(xo,0R)°
gx (‘Z‘an) = IV(.’L'(),R)’ Y€ (LU(), ) )
U(R)
2 > Cor—t B(zo,0R).
g (fL'(),y) = ZV(.T(), R)’ RS ($Oa R)
PrOOF. This follows easily from (HK(¥)) by integration. O

Lemma 4.12 Let z¢ and R be as above, and let z,y € B(xo,dR)¢. Then there exists 0 > 0 such that

d(z, 0
)~ ool <o (THE) e of ) (425)
Zo, ¢

PROOF. The Hélder continuity of pP follows from (PHI(¥)) by a standard argument. Integrating we obtain
(4.28). O
Fix zg € X and let B' = B(z¢,R), B = B(xg, R), D = B(z9, R—¢) where e < R/10. Let A = ¢g¥(R)~!
and define
p(z) = 1A (c¥(R) 'GR1p(2)),

where c is chosen so that ¢(z) =1 on z € B'. Using Lemmas 4.11 and 4.12, it is easy to check that ¢ is a
cut-off function for B’ C B that satisfies subsection 3.2 (VI) (a)—(c). To complete the proof of (CS(¥)), we
need to establish (3.5).

Proposition 4.13 Let 1 € X and f € F. Let § be defined by Lemma 4.11 and let I = B(x1,0s) with
0 < s <R and I* = B(x1,s). There exist c1,co > 0 such that for all f € F,

[ Paviee) <t/ m®( [ angn+ene [ ). (4.29)

ProOOF. Case 1. We first consider the case where s = R and 1 = x(. Let
fD:{fo:fZOq.e. on X — D}.

Set
Ex(frg) = E(f.9) + A / fgdu.

Let v = G)?lB/. Note that

o@) < [ "(@u)duty) < Flro) < cU(R),  a €D, (4.30)

by the fact (VD) + (DUHK(¥)) = (E(¥)<) — see subsection 9.2. By [35] Theorem 4.4.1, v € Fp and is
quasi-continuous. Further, since Y is continuous, v = 0 on D°. Let f € F. Then

/ f2dU(v,v) < / f2dT(v,v) = / dT(f%v,v) —/ 2fvdl(f,v).
B X X X
Since v € Fp we have f?v € Fp, so by [35] Theorem 4.4.1,

/ dT(f?v,v) = E(f%v,GP1p) < Ex(f2v,GR1p) :/ fPolpdp < cU(R) | f2du,
X X B’
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where we used (4.30) in the last inequality. Using Cauchy-Schwarz and (4.30), we obtain

‘/Xﬂvdf(f,v)‘ c(/Xv2d1‘(f,f))1/2(/xf2dI‘('u,v)>l/2

/ /
([ a.n) ([ raren)”
So, writing H = [, f?dl'(v,v), J = [z dU(f, f), K = [ f?du, we have

IN

IN

H < cU(R)K + cU(R)JY?H'Y/?,

from which it follows that H < ¢¥(R)K + c¢¥(R)%J. From this, (4.29) with s = R follows easily.

Case 2. Define
Q(b) = Q(zo,b) = {y : g% (z0,y) > b}.
and let
h = Cy¥(R)/(2V (20, R)),

where Cj is as in Lemma 4.11. Note that by Lemma 4.11 and the fact g2 (zo,y) =0 for y ¢ D,
B(z,0R) C Q(2h) C Q(h) C B(zo, R).
In Case 2, we will consider the situation that either
I" C Q(2h)

or

I* N B(zo,6R/2) = 0

(4.31)

(4.32)

hold. Since ¢ =1 on Q(2h), (4.29) is clear if (4.31) holds. Thus, we consider when (4.32) holds. Let 1)5(z) =
1A (C\I/(s)_le(mo’s_e)lj(w)) be a cut-off function for I C I* given by Case 1. Let ¢o(z) = ¥(R)'G{1p ()

where B" = B(zg,dR/2) and ¢1(z) = po(z) — minyer- ¢(y), then by Lemma 4.12,
p1(z) <c(s/R)’ =L, =zel.

Let

A = 24r

/If (e 9),
p = [argpree [ 7
* I*
F = . FAp2dT (o1, 1)
Now as
dU(f*p2p, ) < dU(f*92p1,00) = fAp2dT (1, 90) + @1dD(f*42, @0),

we have

A<F= /I F3dT (1, p0) = /I dT(f*3 1, 90) — /1 1dT(F*43, o).
For the first term in (4.33)

o = [ @
* X
= e/, U(R) 'GP 1) — A /X P2 orp0du

< EMen ¥R R =R [ Putedu=o.
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Here we used the fact that ¢; > 0 on I* and that the support of 1) is in I*, hence outside B” (due to
(4.32)).
The final term in (4.33) is handled, using the Leibniz and chain rules and Cauchy-Schwarz, as

[ ot <2 [ oputantrion)] +2| [ o v o)

c{(/j w?dF(f,f))1/2+( . f2df(¢5,¢s)>1/2}(/l* go%f%gdr(@o,(po))
< ch/QLFl/Q,

1/2

IN

where we used Case 1 in the final line. Thus we obtain A < F < ¢DL? so that (4.29) holds.

Case 3. We finally consider the general case. When either (4.31) or (4.32) holds, the result is already
proved in Case 2. So assume that neither of them hold. Then I* must intersect both B(z(,dR/2) and
B(zo,dR)¢, so s > 6R/4. We use Lemma 9.2 to cover I with balls B; = B(z;,c1R), where ¢; € (0,5/4) has
been chosen small enough so that each B} := B(xz;,c1R/) satisfies at least one of (4.31) or (4.32). We can
then apply (4.29) with T replaced by each ball B;: writing s’ = ¢; R we have

/Bi f2dF(<p, p) < cg(s'/R)ze(/

B

dr(f, f) + (s /

B

f Qdu) :

We then sum over i. Since no point of I* is in more than Ly (not depending on zo or R) of the B}, and
s/c1 < 8 < s, we obtain (4.29) for I. O

5 Strongly recurrent case

5.1 Framework and the main theorem
Let (X,d, u,E) be the MMD space or the weighted graph. It is called a resistance form if F C C(X) and
u(p) —u(@)® .
sup{ () .uEF,E(u,u)>O} < 00, Vp,q € X. (5.1)

Define R(p,q) = (LHS of (5.1)) if p # g and R(p,p) = 0. One can prove that R is a metric and it is called
a resistance metric. By (5.1), the following key inequality holds.

|f(@) = f()I* < R(z,9)E(f,f), VfeF. (5.2)
The next lemma shows that R(p,q) is the effective resistance between p and gq.

Lemma 5.1 =
R(p,q) = (t{E(f, 1) : f() =1, £(a) =0.f € F}) . (5.3)
PROOF. By linear transform f(x) = au(x) 4+ b, we can take f(z) =1, f(y) = 0 if u is not const. So,

u\zr) —u 2
R = sup {8210

_ (inf{E(f,f) Hf@)=1,f(y) =0,f € f}>_1’

cu € F,E(u,u) >O} :sup{g(flf) :fEf,f(x)zl,f(y)zO}

and the conclusion holds. O
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Examples. Any weighted graphs are resistance forms. For the Dirichlet form on R? that corresponds to
Brownian motion, it is a resistance form only when d = 1. Dirichlet forms on the Sierpinski gasket, nested
fractals are resistance forms. Dirichlet forms on the 2-dimensional Sierpinski carpet are resistance forms.

We now give several inequalities.

(T) We say X satisfies a volume growth condition (VG (¥_)) if there exist a < 8V 8 and C > 0 such that
the following holds,
(o7
V(z,r) <C (g) V(z,s) Ve X, Vr > s>0. (VG(T.))

(IT) We say X satisfies a resistance upper and lower bound of order ¥ (RU(¥)), (RL(V)) if there exist
C1,Cy > 0 such that for all z,y € X,

¥(d(z,v))
oY) < OB, d, ) (R
OB iy, (RL(Y))

w(B(z,d(z,y)))

Theorem 5.2 Let (X,d, u,E) be a resistance form on a MMD space or a weighted graph. Assume (VG(¥_)).
Then,
(HK(9)) & (RU(9)) + (RL(Y)) & (RL(Y)) + (PI(D)). (5.4)

When (5.4) holds, it is strongly recurrent in the following sense. There exists p; > 0 such that
ng(ay <TB($,21‘)) > p1, Ve e X,r >0, yEB(w,r), (55)

where 04 = inf{t > 0: X; € A} and 74 = inf{t > 0: X; ¢ A}
When X is a tree, we have a simpler equivalence condition as follows.

Corollary 5.3 Let (X, u) be a weighted graph with c1 < pgy < co for all x ~ y. Assume that X is a tree.
Then,
(VG(B-)) + (HK(B)) & [V (z,d(z,y)) < d(z,y)’~" Va,y].

5.2 Proof of Theorem 5.2: (RU(V)) + (RL(Y)) = (HK(V))

The flowchart of the proof is similar to that of Proposition 4.1.
First, note that the following holds by (VG(¥_)); there exists ¢ > 0 such that

) _ 0

Viw.s) = CV(:I:,r) Vr > s> 0. (5.6)

Indeed, by (VG(¥_)), we have

Vr > s >0,

R ORTONEE

which implies (5.6).
We now give the proof of (RU(¥)) + (RL(¥)) = (HK(V)) step by step.

STEP A: PROOF OF (RU(V¥)) = (DUHK(¥)). Let fi(y) = pi(z,y) and

o(t) := || fil[5 = pae(@, 2) = far(). (5.7)
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Since fB(w " frdu < 1 for r > 0, there exists y = y(¢,7) € B(z,r) with f;(y) < V(z,r)~!. Using (5.2),

3110 < B + 7o) = ) < G755 + £ fOR@.).

Since R(z,y) < c1¥(r)/V(z,r), which is due to (RU(¥)), it follows that
a¥(r ) 1 1
Vi) E(fe, fr) =2 2¢¥ p(t/2)* - Vie.r)?

Hence
2V (z,r) "t — ©(t/2)?V (z,7)
c1U(r) )

Noting that —(t/2)? < —¢(t)?, which is due to the fact ¢'(t) = —2&(f1, fi) < 0, we integrate (5.8) over
[t,2t]. Then,

¢'(t) = =2E(fe, fo) < (5.8)

2t tp(t)*V (1)
—p(t) < p(2t) — p(t) < al(r\Viz,r)  al(r)

Rearranging this, we have
to(t)?V (2, 7)? < 20+ e U(r)V (z,m)p(t) < (48) V (218 (r)V (2, 7) (1))

Thus, we obtain ¢(t) < (2/V(z,7)) V (2¢19(r)/(tV (x,7))). Taking r = U!(¢) and using the doubling
properties of ¥ and V', we obtain (DU HK (7)). O

StEP B: PROOF OF (VG(V¥_)) + (RU(¥)) 4+ (RL(¥)) = (E(¥)). In order to prove this, we first give a
key lemma.

Lemma 5.4 Assume (VG(V_)), (RU(Y)) and (RL(V)). Then, the following holds.

a1 ¥(r)
Vix,r)

< R(z,B(z,r)°) < ()

- X. .
S V) forall >0, z€ (5.9)

PRrROOF. First, take y,z € B(z,r) with d(y,z) = Ar, A < 1. We have by (5.2) and (RU(¥)),

10) - 1P < Ry e 0) < LSS poran fe (5.10)

Let z € X be such that c,r < d(z,z) < r for some ¢, < 1. If h, is the harmonic function on X \ {z, z}
with h,(z) = 0, h,(z) = 1 then £(h,,h,) = R(z,z)”'. Applying (5.6), (5.10) and (RL(¥)), we have, if
d(y, z) = Ar,

U(Ar) csU(Ar)V (z, cor)
ha )2 = |ha(y) — ha(2)]? < ——2 &
[h= ()] [h= () 2) < V(z,A\r)R(z,z) — V(x, Ar)U(c.r)
So there exists a constant A; such that d(y, z) < Air implies that h,(y) < %

Now use (VD) to cover B(z,r)\ B(z,c.r) by balls B(z;, A1), 1 <1 < M, with ¢,r < d(z, 2;) < r. Here,
M depends only on the volume doubling constant. Let ¢ = minh,,, and h = 2(g — %)J’ - 1B(zr)- Then
h(z) =1, and h = 0 on B(z,c.r) so that

ceaV(z,eor)  csV(z,r)
Tler) = O(r)

R(z, B(z,r)") "' < E(h,h) <4 E(hzy, b)) < 4M(miinR(:v,zi))_1 <

i

We thus obtain the first inequality of (5.9). The second inequality of (5.9) is clear from (RU(¥)), because
R(z,B(z,7)¢) < R(z,y) for all y € 0B(x,T). a

33



PRrROOF OF (E(V)). Denote B := B(xzg,r) and let (£p,F ) be the part of the Dirichlet form in the sense
of [35] section 4.4. By Theorem 4.4.3 of [35], it is a regular Dirichlet form on L%(B,u) with Fg C {f €
F: f(z) =0o0n z € B¢}. Let XP be the corresponding Hunt process, which is a process with the killing
condition outside B. Using (5.2) and (RU(¥)), we have

sup |f(z)? < c¥(r) E(f, 1) for all f € Fp. (5.11)
Tz€EB

- V(zg,7)

Thus, (€p,Fp) is a transient Dirichlet form so that the extended Dirichlet space (£p, (FB).) is a Hilbert
space (Theorem 1.5.3 in [35]). Using (5.11) and the Riesz representation theorem, there exists a Green
kernel gg(-,-) with the reproducing property; £(gp(z,-), f) = f(z) for all f € Fp. Using the reproducing
property and the irreducibility of the form, gg(z,y) = gp(y,z) and gp(xz,z) > 0 for all z,y € B. Set
pz(y) :=gB(z,y)/g98(z,z). Then p; is an equilibrium potential for R(z, B¢) and we have

R(z, BY) ™" = E(ps,ps) = gn(w,1) " (5.12)
Since pz(y) < 1forally € X,
98(z,y) < gp(x,x) for all z,y € X. (5.13)
On the other hand, by the definition of the resistance,
R(z, B¢) < R(z,y) for all z,y € X,y € B,

so that gp(z,z) < c1¥(r)/V(z,r). Now, since

B [rpan)] = /B 95(0,9)du(y), (5.14)

e have
) ' T c1¥(r)
E*[1p(z,m)] < V(o T)V(a:o,r) < c19(r),

where we use (5.13). We thus obtain the second inequality of (E(T)).
Next, by (5.2) and the reproducing property of gp, we have for y € B,

l9B(20,z0) — g98(70,y)|* < E(9B, 98)R(20,y) = gB(20,20) R(20, ).
Thus, by (5.12) we have

R(z0,y)
1-— 2o e
Now using Lemma 5.4, we see that there exists § > 0 such that
Do (Y) = 95(z0,9) >1/2 for all y € B(xg,dr). (5.15)
98(0,Z0)

On the other hand, by (5.12) and Lemma 5.4, we have gg(zo,z0) = R(zo, B¢) > c2¥(r)/V (zg,r). Combining
this with (5.15), we have

1
9B(z0,y) > VCY?ELBO(,T:)’ for all y € B(xo, or).
Applying this with (5.14) and (VD), we have
E*[r ]2/ (zo,y)du(y) > cs¥(r) V(zo,0r) > ca¥(r)
B(zo,r) BQB 0,y)aply) = V(zo,7) 05 2 C4 )
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where ¢4 > 0 depends on d. We thus obtain the first inequality of (E(¥)). O
Remark. (5.15) implies immediately (5.5). This implies (EHI) by Lemma 1.6 in [6]. Thus, (RU(¥)) +
(RL(¥)) = (HK(Y)) is proved by Proposition 4.1 and Proposition 4.3 (Step A above was not needed).
But we do not choose this way because several steps of the current proof are much simpler than those of
Proposition 4.1 and Proposition 4.3, thanks to (5.2).

StEP C: PROOF OF (VD) + (DUHK(V)) + (E(¥)) = (UHK(¥)). This step is the same as Step 1 and
Step 2 in the proof of Proposition 4.1.

STEP D: PROOF OF (VD) + (ELD(¥)) = (DLHK(¥)). This step is the same as Step 3 in the proof of
Proposition 4.1.

STEP E: PROOF OF (VG(¥_)) + (RU(¥)) + (DLHK(V)) = (NLHK(¥)).
First, note that (RU(Y)) implies (DUHK(¥)) as shown before. Note also that, since pi(z,z

)
||Pt/2('a$)||%a we have atpt(wax) = 2(Apt/2('7x)7pt/2('7‘r)) = —25(;0,5/2(',$),pt/2(',$))- Thus, using (5 )
and Proposition 9.9, we have

pe(z,y) — pelz, ¥ < R(y, v )E(pe(-, ), pe(-, 1)) <
Using this and (DLHK (%)),

pi(z,y) > pilz,2) — [pelz, 2) — pe(z, )]
S co B { U(d(z,y)) ' c1 }1/2
— V(z,¥-1(2)) V(z,d(z,y)) tV(z,¥-1(2))

_ 2 ( ! _c(_w(w,y» )/>
Ve, U 1(¢) 2\ V(z, T 1)z ° \tV(z, d(z,y)) '

1/2
Now, taking c4 large enough, we have W >c3 (%) if U(d(z,y)) < cqt holds. Here we

used (5.6). We thus obtain the result. a

STEP F: PROOF OF (NLHK (V)) = (LHK(¥)). This step is the same as Step 5 in the proof of Proposition
4.1.

Combining Step A-F, the proof of (RU(¥)) + (RL(V)) = (HK(V)) is completed.

5.3 Proof of Theorem 5.2: The rest

Since this will not be discussed in the summer school, we just give references. (HK(¥)) = (RU(Y)) +
(RL(Y)) is proved in [15] Section 4. (VG(¥_))+(RU(¥))+(RL(¥)) = (PI(V)) and (VG(¥_))+(PI(¥)) =
(RU(¥)) are proved in [15] subsection 2.2. They are proved for the case of weighted graphs, but the
translation to the current setting is easy.

6 Application: RW on critical branching processes

6.1 Background

We recall the bond percolation model on the lattice Z% each bond is open with probability p € (0,1),
independently of all the others. Let C(z) be the open cluster containing z; then if 8(p) = P,(|C(z)| = +00)
it is well known (see [43]) that there exists p. = p.(d) such that 6(p) =0 if p < p. and 6(p) > 0 if p > p,.
Ifd=2ord>19 (or d > 6 for ‘spread out’ models) it is known (see [43, 51]) that 6(p.) = 0, and it
is conjectured that this holds for all d > 2. At the critical probability p = p, it is believed that in any box
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of side n there exist with high probability open clusters of diameter of order n — see [24]. For large n the
local properties of these large finite clusters can, in certain circumstances, be captured by regarding them
as subsets of an infinite cluster C, called the ‘incipient infinite cluster’ (IIC).

This was constructed when d = 2 in [54], by taking the limit as N — oo of the cluster C(0) conditioned
to intersect the boundary of a box of side N with center at the origin. For large d a construction of the
IIC in Z% is given in [49], using the lace expansion. It is believed that the results there will hold for any
d > 6. [49] also gives the existence and some properties of the IIC for all d > 6 for ‘spread-out’ models:
these include the case when there is a bond between z and y with probability pL~¢ whenever y is in a cube
side L with center z, and the parameter L is large enough. Rather more is known about the IIC for oriented
percolation on Z, x Z® (see [50, 51]), but in this discussion, which mainly concerns what is conjectured
rather than what is known, we specialize to the case of Z¢. We write Cq for the TIC in Z%. It is believed that
the global properties of 5,1 are the same for all d > d., both for nearest neighbour and spread-out models. In
[49] it is proved for ‘spread-out’ models that 5(1 has one end — that is that any two paths from 0 to infinity
intersect infinitely often.

For large d, it is believed that the geometry of 5d is also similar to that of the IIC when ‘d = oo’ — that
is to the IIC on a regular tree; this is supported by the results in [50, 49]. For trees the construction of the
IIC is much easier than for lattices, and there is a close connection between the IIC and a critical Bienaymé-
Galton-Watson branching processes conditioned on non-extinction. In [55], Kesten gave the construction of
the IIC G for critical branching processes. This is an infinite subtree, which contains only one path from the
root to infinity. This tree is quite sparse, and has polynomial volume growth: in the case when the offspring
distribution has finite variance, a ball B(z,r) in G has roughly 72 points. (This is when distance in G is
measured using the natural graph distance). B

Let Y = (Y;,t > 0) be the simple random walk on C4, and ¢;(x,y) be its transition density. Define the

spectral dimension of C4 by

~ 1
4G = 2 i “ELET
(if this limit exists). Alexander and Orbach [1] conjectured that, for any d > 2, d,(C4) = 4/3. While it is
now thought that this is unlikely to be true for small d, the results on the geometry of Ed in [50, 49] are
consistent with this holding for large d. (Or for any d above the critical dimension for spread-out models).
Random walks on supercritical clusters in Z? are studied in [3] (transition density estimates) and [74]
(invariance principle for the quenched case for d > 4; in the annealed case, invariance principle was proved
in [33]). In these cases the large scale behaviour of the random walk approximates that of the random walk
on Z%, and the unique infinite cluster has spectral dimension d.
In what follows, we will specialize to the case of critical percolation on a regular rooted tree with degree
ng + 1. We keep ng fixed, but (in view of possible future applications) wish to obtain estimates which do
not depend on nyg.

bl

6.2 The model and main results

We will define the random graph G we will be working with. We could regard this either as critical percolation
on the mg-ary tree B, conditioned on the cluster containing the root 0 being infinite, or as the (critical)
Bienaymé-Galton-Watson process with Bin(ng, 1/ng) offspring distribution, conditioned on non-extinction.

Let B be the ng-ary tree, and let 0 be the root. A point z in the nth generation (or level) is written
z =(0,l1,---,1,), where [; € {1,2,---,no}. Let B, be the set of ng points in the nth generation, and let
B, = UL B;. If z € By, we write |z| = k. If z = (0,11,---,1,) € By, let a(z,r) = (0,11,--+,ln—y) be the
ancestor of = at level |z| —r.

We regard B as a graph (in fact a tree) with edge set E(B) = {{z,a(z,1)},z € B — {0}}. Let 7,
e € E(B), be i.i.d. Bernoulli 1/ng r.v. defined on a probability space (2, F, P). If n. = 1 we say the edge e
is open. Let

C(0) = {z € B: there exists an n—open path from 0 to z}
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Figure 4: Random walk on the GW-tree

be the open cluster containing 0. It is clear that Z, = |C(0)NB,| is a critical GW process with Bin(ng, 1/ng)
offspring distribution. Here and in the following, |A| is a cardinality of the set A. As Z has extinction
probability 1, the cluster C(0) is P—a.s. finite.

We have

Lemma 6.1 ([55], Lemma 1.14) Let A C B<y. Then

n—o0
and writing Po(A) = |[ANB|P(C<x = A), Py has a unique extension to a probability measure P on the set
of infinite connected subsets of B containing 0.

Let G’ be a rooted labeled tree chosen with the distribution P: we call this the incipient infinite cluster
(IIC) on B. For more information on G’ see [48, 55] but we remark that P-a.s. G’ has exactly one infinite
descending path from 0, which we call the backbone, and denote H.

It will be useful to give another construction of the IIC, obtained by modifying the cluster C(0) rather

than its law. We can suppose the probability space (2, F, P) carries i.i.d.r.v. &, ¢ > 1 uniformly distributed
on {1,2,---,n9}, and independent of (7). For n > 0 let =, = (0,&1,...,&,), and let

Tle =

~ |1 ife={E,,Ent1} for some n >0,
1 otherwise.

Then (see [48]) if
G = {z € B : there exists a 7-open path from 0 to z},

G has law P. It is clear that the backbone of G is the set H = {=,,n > 0}.

For z,y € B let
Pe() =P(lz €G),  Pry() =P(|z,y €9),

and let E; and E;, denote expectation with respect to P, and [P, respectively. Given a descending path
b=1{0,b1,bo,...}, (which we call a possible backbone) let

Pop(-) =P(|lz € G, H =),

and define PP, ,, ; analogously.

For each z, y € B, let y(z,y) be the unique geodesic path connecting = and y. We say that z is a middle
point of y(z,y) if z € y(z,y) and |d(z,2) — 1d(z,y)| < 1. We remark that the construction of G makes it
clear that P, , (1. = 1) = 1 if the edge e lies in any of the paths b, v(0,z) and v(0,y), and that under P, , 4
the r.v. 1., e ZbU~y(0,2) U~y(0,y) are i.i.d. with Py ys(n. = 1) = 1/no.

For each fixed G = G(w), we will consider the continuous time simple random walk {Y;} on G as in
subsection 3.1 and define its heat kernel ¢¢(z,y) as in (3.1).
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Theorem 6.2 (a) There exist cy,c1,c2, S(x) such that for each x,
P (S(z) > m) < co(logm) ',
and on {w: z € G(w)}
et 23 (loglog t) V7 < ¢ (z, ) < cot™2/3(loglogt)® for all t > S(z).
(b) ds(G) = 4/3 P-a.s.

The cluster G contains large scale fluctuations, so that ¢;(z, z) does have oscillations of order (loglogt)*
as t — oc.
Proposition 6.3

gggﬂmgbgwﬂ%w%gwﬁ)g2, P’ —a.s.

Theorem 6.4 (a) We have

t? < B ERd(z, ;) < Bo B sup d(x,Ys) < cpt'/?.
0<s<t

(b) There exists T(x) with Py(T(z) < c0) =1 such that
est'3(loglogt) ™2 < E%[d(z,Y;)] < catlogt  for all t > T(x).

We also have off-diagonal bounds for ¢’ (z,y). For the quenched case, our theorem is the following shape.

Theorem 6.5 (1) Let x,y € G, t > 0 be such that N := [\/d(z,y)3/t] > 8. Then, there exists an event
F, = F.(z,y,t) that satisfies
Pwo,yo,b(F*(xa y,t)) >1l-a exp(_CQN)a

so that the following holds:
@ (z,y) < cst™2/3 exp(—caN), Vw € F.

(2) Let z,y € G, m>1, s > 1 and let T = d(z,y)>k/m?2. Then, there exists an event G, = G(z,y,m, k)
that satisfies
]Pwyy)b( G*(.’L‘,y,m, K:) hOst ) Z 1-— lei_l’

so that the following holds:
Qor(z,y) > cgT 3 calrteam Yw € G,.
For the annealed case, the off-diagonal bounds for ¢’(z,y) are of the same form as the bounds
ot~ /% exp(—'(d(x,y)® /t)/ D)
obtained for regular fractal graphs.

Theorem 6.6 (a) Let z,y € B. Then

d(xay)3)1/2)_

Em,ng](w, y) S C1t72/3 eXp ( — C2( t

(b) Let z,y € B, with d(z,y) = R, and csR <t. Then
Eay i (@,y) > cat™ exp(—cs (R /1)'/?).
Define the continuous time rescaled height process
ZM = 071340, Y,), t>0.

By Theorem 6.4 (a) the processes (Z(”),n > 1) are tight with respect to the annealed law given by the
semi-direct product P* = P x PY. (This is much easier to prove than the full convergence given in [55].)
However, the large scale fluctuations in G mean that we do not have quenched tightness.

Theorem 6.7 P-a.s., the processes (Z("),n > 1) are not tight with respect to PLS.
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6.3 Ideas of the proof

The proof consists of the analytic part and the probabilistic part. We would emphasize that we cannot
expect (VD) for this kind of random object, so we need estimates without assuming (VD).

Definition 6.8 Let x € G, r > 1. Let M(x,r) be the smallest number m such that there exists a set
A={z,...,2m} with d(z,z;) € [r/4,3r/4] for each i, such that any path 7 from x to B(z,r)° must pass
through the set A.

Analytic estimates For fixed r > 1 and zy € G, we denote B = B(xq,7), M = M(xg,7), V =V (x0,7).

Proposition 6.9 (a) Let (G, ) be a weighted graph and suppose that the edge weights satisfy pgy > 1 for
all ¢ and y. Then

@2V (a,r) (T, T) < Vi) z€G,r>0.

(b) Assume further that G is a tree. Let Vi = Vi(zo,7) = V(x0,7/(32M (20,7))). Then if x € B(zo,7/(32M)),

% t
P <) < (1= gpw) + 3
and Vi( )2 Vi( )
c1Vi(zo, rV1\Zo, T
> S e
qat(z, ) > V(zo,7)3M (0, 7)2 Jort < 64M (zo,7)

(a) can be proved by carefully chasing Step A in subsection 5.2 and modifying to the current situation.
For (b), first, similar argument as in Step B in subsection 5.2 (using the tree property and M (z,r) instead
of (VD)) gives the estimate of E[Tg(s,,)]- Then the argument in Step 3 in the proof of Proposition 4.1 gives
the desired result. See [16] for details.

Probabilistic estimates By the above analytic estimates, we see that the information of V(z,r) and M (z,r)
are necessary for the on-diagonal estimates. We will show that the probability that V(z,r) and M (z,r)
behave badly is ‘small’.

Proposition 6.10 (a) Let A >0, r > 1 and z,y € B, and b be a possible backbone. Then
Poyb(V(z,7) > Ar?) < g exp(—c1A),
and
Py b(V(z,7) < Ar?) < cp exp(—ca/ V).

(b) For any e >0
lim su V(0,n)
im
ol 12 (loglogn)i—¢

(c) There exist cq,c5 > 0 such that for each r > 1 and each z,y € B, and possible backbone b

=00, P—a.s.

Py yo(M(z,7) > m) < cge” ™.

Y,

These can be obtained, basically through large deviation estimates of the total population size of the
critical branching process. See [16] for details.

We now define a ‘good’ random set.

Definition 6.11 Let z € B, r > 1, A > 64. We say that B(z,r) is A—good if it satisfies the following:

1
T €G, X2 <V(z,r) <1\ M(z,r) < 6—4)\, V(z,r/N) >\ and V(z,r/A\%) >r2\75.
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By Proposition 6.10, we have the following.
Corollary 6.12 For z € B and any possible backbone b

Py (B(z,r) is not A-good) < cre M,

Combining these analytic and probabilistic estimates, we can obtain Theorem 6.2. To get off-diagonal
estimates, we need to take more refined ‘good’ random sets. See [16] for details.

7 Some open problems

Finally, we would mention several important open problems.

e Simpler stable equivalence conditions for (PHI()): It is not easy to check (CS(¥)) in concrete ex-
amples. Quite recently, Barlow-Bass ([8]) proved (PHI(S)) < (VD) + (PI(8)) + (E(8)) for weighted
graphs. But we do not know if (E(3)) is stable under perturbations or not. There is a conjecture that
(PHI(B)) & (VD) + (PI(8)) + (RES(6))-

e Stability of (EHI): We do not know if (EHI) is stable under perturbations (especially under rough
isometries). This is one of the big open problems of this area.

e Stability of (UHK(¥)): As in subsection 8.2, there are various equivalence conditions for (UHK (¥)),
but so far we do not know if either of those is stable under perturbations. There is a related conjecture
by Grigor’yan that (UH K (3)) is equivalent to (F K (3)) plus so called the anti Faber-Krahn inequality,
which guarantees the optimality of (FK(f)) for balls.

e RW on IIC on Z% Tt will be very interesting to obtain similar results as those in Section 6 for RW on
infinite incipient clusters on Z¢. It is known (at least believed) that for the case of d = 2 and d large
enough, RW on such IIC is in the framework of resistance forms discussed in Section 5, so we have
reasonable analytic estimates. It is hard to obtain probabilistic estimates in these cases though.

8 Appendix: Upper bounds

8.1 Local ultracontractivity

In this subsection, we give a generalized version of Theorem 2.1. It is a localized version as we will treat the
operator on B(zg,r*) with Dirichlet boundary condition, but the global version can be recovered by taking
r* = oo. This subsection is from [29], where the original ideas came from [27, 28] etc.

Let r* > 0, let m : X x (0,7*] — R, be a Borel function so that for each z € X, m(z,-) is monotone
decreasing and differentiable. In this subsection, ¥ is not necessarily of the form (3.2). We simply let
¥ : Ry — R, be a monotone increasing function with the following growth condition; there exists C1,Ce > 1
such that

U(2r) < C1Y(r) < ¥(Cor), Vr € R;. (8.1)

Denote my(t) := m(z,¥~1(t)) and define M,(t) = —logmg(t). Throughout the paper, we assume that
there exists o > 0 such that

M (u) > aML(t), Vt>0,u€lt2], z €M, (9).

This means that the logarithmic derivative of m, has polynomial growth.
Let m; : Ry — Ry, 7 = 1,2. We shall say that m; < mg if there exists C,C" > 0 such that mq(t) <
Cmso(C't). We say that m; and mo are equivalent if m; < mgy and mo < my. In this subsection, the
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inequalities will be written modulo equivalence of functions. Note that we suppose m differential to have a
neat theory, but this assumption can be relaxed by regularising m and get an equivalence function.
Define the spectral gap of an open set {2 C X by

Amin(Q) :== in g(fg,
reFa\{o} I3

where Fo:={f € F: f=0in X \ Q}. We will fix r* > 0 and denote B™ := B(zg,r*) for each zy € X.
When the dependency of g is clear, we sometimes denote it by B.

ITE™ (1500 < m(zo, T7L(2)), Vi < T(r*), Voo € X. (UC(1))
Epzo(u) > lul3 log 3 5 Vu € Fyy e, Vr < r*, and Vzy € X. (logLN (7))
20(r) 7 m(zo,7)llullf
9w0(||u||%) < Epeo(u), Vu € Fyyre s.t. [Julli <1 with ||u||% > m(zo, "), Vo € X. (Nash(¥))
1
Amin(Q) > = YQ C B® with p(Q) < Vo € X, FK (U
2 ) MO S g (FHE)

Here,

Faoorr = {fe€F:f=0in X\ B(zo,r")},
! -1 1 Y

Oz (y) = _Zmzo(mz‘o (y)) and g, (y) :\/W’ 80 Oz0(y) = m

(FK (7)) is called the Faber-Krahn inequality.
Theorem 8.1 Assume (6). Then
(UC(¥)) < (logLN(¥)) & (Nash(¥)) & (FK(7)).

This theorem includes two typical cases.

Case 1: Uniform case Let m(z,7) = m(r) and ¥(¢) = ¢t. (So my does not depend on z.) This case
corresponds to the work in [28].

Case 2: Volume doubling case Let m(z,r) = 1/V(z,r) and assume (VD). Especially, the case U(t) = t? for
some (3 > 2 was treated in [36, 57].

Remarks. 1) We can prove the long time version of Theorem 8.1 in the same way. Namely, (UC(¥))
2
with ¢ > W(r*) is equivalent to (logLN (¥)) with lully m(zg,2¥(r*)) and so on. The proof is the same as

llull¥ =
that of Theorem 8.1.
2) In [57], Kigami introduced the following local Nash inequality.

lull3
U(r)’

m(zo, 7)||ull}
U(r)

Epro(u) + >p Vu € Fygpe,Vr < r*,Vzo € X. (KgLN(¥)).

(logLN(¥)) = (KgLN(¥)), but in general the converse is not true. If we assume the doubling condition
for m (typically, Case 2 above), then it holds that (logLN(¥)) < (KgLN(¥)).
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We will need (FK(¥)) = (UC(¥)) in subsection 4.1, so we give the proof below.

PROOF OF (FK(V)) = (Nash(¥)). We adopt the argument originated in [38]. For each A > 0, since
u < 2(u—A) on {u > A}, we have

/u2§4/ (u— N)? + 2\ 54/(u—A)i+2A||uII1.
{u>22} {u<2xr}

Applying (FK(¥)) to (u — \)4 gives

u
=3 < > N)PEn(—0) < o (U2 0w,
where we used the fact p({u > A}) <||ull1/A and ¢y, is non-decreasing in the second inequality. Therefore,

el
lul < 4puy (15122 p0) + 22l

Take A = ||u||3/(4]|u||1). We then obtain the following Sobolev-type inequality.

I[ul2 < 8¢§0(||“||§)5(u), Vu € Fogy e with [l 1 — Vap € X. (Sob(T))
[[ullz [ull3 = m(zo,r*)
It is easy to see that (Sob(¥)) implies (Nash(¥)). a

PROOF OF (Nash(¥)) = (UC(¥)) Since | TBu||; < ||ul|1, replacing u by TPu in (Nash(¥)) gives

Ouo(IT7ull3) < EB(Tu),  Yu € Fagpe,

lul|1 = 1. (8.2)
Let I(t) = ||TPu|)%, then I'(t) = 2(%TtBu,TtBu) = —2€(TPu). Tt follows from (8.2) that
I'(t) < =205, (I(t)).

By integration, we have

By definition, we have

S0

Thus, we obtain I(t) < mg,(2t). It follows that | T}2||?_,5 < ma4,(2t). Since T2 is symmetric, we have
B B B B
173 1500 < ||Tt/2||1ﬂ2||Tt/2||2ﬁoo = HT,t/QH%—)Q < My (8),

which is the desired inequality. O
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8.2 Equivalence to (UHK(f))

In [36], A. Grigor’yan proved various equivalence conditions for (UH K (f)) under (VD). To state his main
theorem, we prepare two more notions.

e X satisfies E(B) if there exist C,v > 0 such that for any ball B(zg,r) in X and for any non-empty
open set Q C B(zo,r),

ess sup, ol ] < Crﬂ(%y. (E(B))
e X satisfies (Pg) if there exist € € (0,1) and 6 > 0 such that
P(rp(py < 6rf) <e,  Vz € X,Vr>0. (Pg)
Clearly, (E(B)) = (E(B)<). As mentioned in the Step 1 of the proof of Proposition 4.1, (E(8)) = (Pg).
Theorem 8.2 ([36] Theorem 12.1) Assume (VD). Then.

(UHK(B)) « (DUHK(B))+ (Ps) < (E(B)) + (Ps) & (FK(B)) + (Ps)
< (DUHK () + (E(B)) < (E(B) + (E(B)) < (FK(B)) + (E(B)).

We believe that Theorem 8.2 can be exptended to our time scaling ¥ without any difficulties.
It will be interesting to compare Theorem 8.2 to the following (8 = 2 case), which was proved in the
setting of Riemannian manifolds in [38] Proposition 5.2.

(UHK(2) & (DUHK(2)) < (FK(2)).

9 Appendix 2: Miscellaneous proof

9.1 Consequences of (VD)
First, it is easy to deduce from (VD) that there exist ¢;, > 0 such that if z,y € X and 0 < r < R then
Viz,R d(z,y) + R\
(. R) _ cl( (z,y) ) _

V(y,r) r

Lemma 9.1 Assume that X satisfies (VD). Then, there exists 6 € (0,1) such that V(z,r/2) < §V(z,r)
forallr >0 and z € X.

9.1)

PROOF. SInce X has infinite diameter and since it is connected, there exists y € X such that d(z,y) = 3r/4.
Note that B(z,r/2) N B(y,r/4) = 0 and B(z,r/2) U B(y,r/4) C B(z,r), so that V(z,r/2) + V(y,r/4) <
V(z,r). Since B(z,r/2) C B(y,5r/4), (VD) implies V(z,r/2) < V(y,5r/4) < ¢V (y,r/4) where ¢ > 0 is
independent of 7,z and y. Combining these facts, we obtain (1 4+ ¢~ 1)V (z,7r/2) < V(z,7). O

Finally, we give the following covering lemma.

Lemma 9.2 Assume that X satisfies (VD). For zyp € X and 0 < s < R < o0, there exists a cover of
B(zy, R) by balls B(x;,s) with z; € B(xg, R) such that no point in X is in more than Ly of the B(x;,2s).
Here Ly depends only on X.

PROOF. Since X is a locally compact separable metric space there is an increasing sequence of compact
sets { Ky, }n>1 such that U,>1 K, = B(zg, R). Now, take z1 € K7 and choose 3,73, -+ € K1 by letting xl+1
be any point in K \ Ui B (:1:]1, s). We do this until we can no longer proceed. Since K; is compact, there
is a finite subset {wz}ilzl C {z}}; such that K C Uélle(a:Z, s). We next choose 77,73, - € K by letting
z?,; be any point in K, \ (Uélle(:vi, s)U U;ZIB(xg, s)). Again we do this until we can no longer proceed.
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By doing this procedure iteratively, we obtain a desired open covering of B(xg, R). Note that the z; must
be at least s distance apart, so that the balls {B(z;, s/2)}; are disjoint. Now suppose y is in N of the balls
B(z;,2s), 1 € N (N may be infinite at this stage). Using (9.1), there exists such that for each of these we
have V' (y,3s)/V (zi,s/2) < Ny. Since B(y, 3s) contains N disjoint balls B(z;, s/2),

V(y,3s) > > Vi(wis/2) > NN;'V(y,3s),
1:y€ B(x;,2s)

which implies N < Ny, independent of y and s. O

9.2 Proof of (VD) + (DUHK(¥)) = (E(¥)<)
Let ¢y > 1. By (9.1) and (DUHK (¥)), we have

PY(rpnm > Uleor)) < PY(Yoqan € Bla,r)) < /B . PeCan:2)dn)

c1 2%¢; 2%,V (z,r)
< 9 gz < 58 () = VT
< /B@,r) V(e ™ )—/B@,ﬂ 7, er) ™ = Viaeon)

By Lemma 9.1, we may choose ¢y so that the last value of the above inequality is less than 1/2. So, by the
Markov property of {Y;}, we conclude

PY(1p(e > k¥(cor)) <27F,  VE>1

Hence,
BVr00.m)] < D0 PY((k+1)W(cor) > ey > kW (eor) ) (k +1)¥(cor) < 4% (cor),
k>0
for all r > 0 and z,y € X. We thus obtain (E(¥)<) O

9.3 Oescillation inequalities and the Holder continuity

In this subsection, we will assume (EHI) and deduce various Oscillation inequalities and Holder continuity
of harmonic functions.

Let u be nonnegative and harmonic in B(zg, R). To be precise, the definition of (EHI) in subsection 3.2
(ITI) should have been,

€SS SUPp(z,, r/2)U < C1€88 Infp(yy r/2)U- (9.2)
zo here is  in the definition of (EHI). We will show here that (9.2) implies the continuity of u inside the
ball B(zg, R), so that (EHI) holds. Indeed, take z1 and r such that B(z1,3r) C B(zo, R). By looking at

Cu + D for suitable constants C and D, we may suppose that ess supp( u =1 and ess infp(;, 9r)u = 0.
Hence by (9.2), we have

z1,2r)

€ss SUPp(g, ,)U — €ss infp, mu < (1— c; t)ess SUPg(g, )t < (1 — crt).
Soif p=1—c ! then
€sS SUPp(y, r)U — €8S infB(zl,T)u < pless SUPp(g, 2r)U — €SS infB(ml,QT)].

It follows easily that

€ss SUPp(z, U — €ss infp(g, yyu < cor” (9.3)

for some v > 0. Define u(z1) = lim,,gess supg(,, ,)u. If one takes a countable basis {B;} for X and
excludes those points z € B; such that u(z) ¢ [ess infp,u,ess supp,u], then for every other z it is easy
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to see, using (9.3), that u(x) = u(z). Thus, u is equal to u for p-almost every z. Moreover, from (9.3)
we see that @ is continuous. Recall that in our definition of harmonic function we take a quasi-continuous
modification as defined in [35]. We conclude u = & quasi-everywhere, and so v has a quasi-continuous
modification that is continuous. Using this modification and (9.2), we have

sup u <e¢ inf w,
B(.’E(),R/Q) B($07R/2)

which is the desired inequality.

Let Hp(z,,r) be a space of harmonic functions on B(zo, 7). Define the oscillation of a function f over B
by Oscpf := ess supgf — ess infg f. Then, the above arguments also show the following.

Lemma 9.3 Assume (EHI).
1) For any € > 0, there exists 6 € (0,1) such that

OSCB(;EO,JT)U < EOSCB(wg,r)ua Yu € HB(.’E(),T‘)'
2) There exist c1,7y > 0 such that

sup  |u(z) —u(y)| <cip? sup |u(z)l, Vp € (0,1),Vu € Hpyr)- (9.4)
z,y€B(z0,p7) z€B(zo,7)

We can now prove the following Holder continuity of harmonic functions.

Proposition 9.4 Assume (EHI). There exists v > 0 such that for any 6 € (0,1), there exists C = Cs5 > 0
so that the following holds,

|u(z) — u(y)| _
sup (DU <001 qup Ju(@), Va € Hapo.
$,3/EB($0,51“) { d(.’E,y)'y } $€B($0,’r) | | B( 0, )

PROOF. Denote B, := B(zg,r). For z,y € By, we consider two cases. first, if d(z,y) > (1 — J)r, then

lu(z) —uly)| < 2811311) lul < 2{(1 —&)r} "d(z,y)” sup |ul.

T

If d(z,y) < (1 —6)r, then B(z,(1—46)r) C B, contains both x and y, where z € X is the mid point of z and
y. Further z,y € B(z,d(z,y)). Applying (9.4) with p = d(z,y)/{(1 — §)r} yields

lu(z) — u(y)] < cr{(1 = 0)r} Vd(z,y)” sup|ul.

T

We thus obtain the result. O

We next discuss about the oscillation of Green functions. Given open set 2 C X and f € B(2), define
the Green operator G as

0
6@ = 5[ [ ],
0
Denote E(Q) := sup, E?[1q]. When Q = B(z,r), we will abbreviate E(B(z,r)) as E(x,r). It is easy to see
G| oo o0 < E(Q). (9.5)

Lemma 9.5 Assume that E(Q) < co. Then, for any f € Co(Q), Gf is harmonic in Q\ Suppf. Also, for
any open set ' D Q, G f — G is harmonic in Q.
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PROOF. Let uy = G¥f. Since G¥ = (—Aq) ™', we see that uy € D(Ag). So
E(uf,v) = —(Aquys,v) = (f,v) =0, Yo € F(Q)\ Suppf).
Thus, us is harmonic in Q \ Suppf. Similarly, set w; = G f — G?f, then
E(wy,v) = E(GY f,0) — E(Gf,0) = (f,v) 2@y — (f,9)12(2) = O,
for any v € F(w). O

Proposition 9.6 Assume (EHI). Let f : B(z,7) — R be a bounded Borel function and set uy = GB@R) 1.
Then, for any 0 <r < R, B B
Oscpeoryuf < 2(E(z,7) + eE(z, R)||f|oo,

where € and 6 are the same as in Lemma 9.3 1).

PrOOF. If E(z,R) = oo, there is nothing to prove, so assume that E(z, R) < co. Denote B, := B(z,r)
and let vy = GP f. Then, by (9.5),

uflloo < E(z, R)|flloo,  llvslloo < E@,7)lIfllco- (9.6)

By Lemma 9.5, wy := uy — vy is harmonic in B,. Using Lemma 9.3 1) and 0 < wy < uy, we obtain
Oscp;,wy < eO0scp,wy < eflwylloo < €lluyl|oo-
Since uy = vy + wy,

Oscp;, uy < Oscp;, vy + Oscps wy < [[vflloo + €l|tflloo < (E(x,7) + eE(2, R)|| floos

where we used (9.6) in the last inequality. Thus we obtain the desired inequality for f > 0. For a general
function f, write f = fy — f_. Then Oscuy = Osc(uy, —us;_) < Oscuy, + Oscuy_, and the desired
inequality is obtained. O

9.4 Time derivative
We follow the arguments in [40, 42]. First, we show the following well-known fact in the semigroup theory.

Lemma 9.7 For any f € L?, let uy = P,f. Then, we have
1
|0sut |2 < ;Husﬂg, 0<Vs<t.
PROOF. Let {Ej} >0 be spectral resolution of the operator —A. Then we have
A * o 2 o 2
w=ef = [CNB, ulp= [ B,
0 0
Thus, we have
o0 o0 oo
Oy = / (=Ne PdExf,  ||puell3 = / Ne PAd|| ExfIP = / N 2ImN 2| By f .
0 0 0
Since Ae (*"9X < (¢t — 5) "1, we obtain
1

1 < _
ol < =z [ eI = Gl

which is the desired estimate. O
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Corollary 9.8 Fort >0 and z € X, the function t — p;(-, 2) is Frechet differentiable in L? and

1
10epe(+, 2)]|2 < E\/p%(z,z), 0<Vs<t.

PrROOF. Let f = p.(-,2) for some € > 0. Then, uy = P;f = pt1c(+,2). Thus, by Lemma 9.7,

1 1
10ipt+e (5 2)[|l2 < mllpm(-,z)llz = E\/pg(s%)(z,z).

Replacing t + ¢, s + € by t, s respectively, we obtain the result. O

Proposition 9.9 For any =,y € X, the function t — py(z,y) is differentiable int > 0 and

0 2
|5ePt(@, W) < S3/pua(@,2)piya(w:v).

PrROOF. By the Chapman-Kolmogorov equation, pi(z,y) = (pi—s(-,z),ps(-,y)) for any s € (0,t), so that
Opr(x,y) = (Oipt—s(-,2),ps(-,y)). Thus, applying Corollary 9.8,

1
7_,,4\/1027‘(37,37)1723(%?/)’ O<Vr<t—s.

0
|5epe(, )] < 0e-s ) oIl < 57—

ot

Taking s = r = t/4, we obtain the result. O

9.5 Proof of Theorem 3.1: (d) = (e)

Recall from [35] Section 1.6 the definition of invariant sets and an irreducible Dirichlet form.
Lemma 9.10 Let X satisfy (EHI). Then & is irreducible.

PROOF. Let A be an irreducible set, and suppose both p(A) > 0 and u(A€) > 0. Then there exists a ball
B = B(z,R) with u(ANB’') > 0 and p(A°N B') > 0, where B’ = B(z,R/2). Since P;14 = 14 it follows
that u = 14 and v = 1 4c are harmonic on B. So by (EHI) we have

a(z) < Caly), =,y € B

Since u > 0 on a set of positive measure, we have that there exists z € B’ with @(z) > 0; hence by the
(EHI), @ > 0 on B'. But as & = 14 p-a.e., we deduce that u(A°N B’) =0, a contradiction. a

Proposition 9.11 Let X satisfy (EHI), and B = B(z,R). Then Gg < o0 on B if g € LL(B).

PROOF. (sketch). Counsider the Dirichlet form £p with domain Fp = {f € F : flgc = 0}. Let A =
B(z,R/2) and h(z) = P*(T4 < 7). Then h is excessive with respect to £p. If h were constant on B then
we would have h = 1 on B, and the set B would be an invariant set for £. Thus A is non-constant.

So by Ex. (4.22), p. 89 in [21], we deduce that the killed semigroup PP is transient. Hence (see [35]
Section 1.6) we have Gg < oo for any g € L (B, p). O

Lemma 9.12 Let D be a bounded domain in X. Then (EHI) implies that there exists the Green density
gP(-,+) which is continuous on (X x X)\ Ay and gp(z,y) = gp(y,z) for all z,y € (X x X)\ A,, where
Ay is the diagonal. Further, there exists C > 0 such that for any r > 0, if yo,y1 € X satisfy d(yo,y1) > 27,
then

9p(yo,z) < Cygp(yo,y)  Vz,y € B(yi,7). (9.7)
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PROOF.  Let zg,z1 € D, Choose r > 0 such that B(z;,2r) C D, B(xg,2r) N B(z1,2r) = 0. Write

B; = B(=i,2r), Bl = B(z;,r). Let f,g € F with supports in Bj and Bj, and [ f = [ g = 1. Let Gp be the

Green operator for the process Y killed on exiting D. By Proposition 9.11 we have Gpf < 0o, Gpg < 0.
Then if v € F with Suppu C B(z1,2r),

so Gpf is harmonic on B;. Similarly Gpg is harmonic on By. By the (EHI) if z € B{ then
Gpf(z) <CGpf(y), y€ Bi. (9.9)

Similarly
Gpy(z) < CGpg(zo), = € By,

So
Gpf(z1) < C(g,Gpf) = C(Gpy, f) < C*Gpg(xo).

Now fix g such that C; = Gpg(zg) < oo — such a g exists by choosing g < chg. Then we have Gpf(z1) <
d||f||1 for all f with support in Bj. Therefore the kernel Gp(z1,dz) has a density gp(z1,y) on Bj. Since
(f,Gpg) = (Gpf,g) for f,g € L?, it follows that gp(z,y) = gn(y,z) pu X p-a.e.

Now, take 19,41 € X that satisfy d(yo,y1) > 2r. For any € > 0 and f € L? with support in B(yo, er),
similarly to (9.8) we can show that Gpf is harmonic on B(y1,(2 — €)r). Thus, by the same way as (9.9),
we have

Gpf(z) < CGpfly), =,y € B(yi,r). (9.10)

Now let fo(z) = V(yo,rn)_llB(yO,,«n)(z) where er > r, | 0. Applying (9.10) to f, and take n — oo, we
obtain (9.7) for u-a.e. yo. By the usual oscillation argument, we can deduce that gp(z,y) is continuous on
(X x X)\ Ay. Especially, gp(z,y) = gp(y,z) for all z,y € (X x X)\ A,y. We thus obtain (9.7) for all
Yo € X. O

Now let M > 2 be fixed. (In fact, we can take M=2.)

Definition 9.13 (£, F) satisfies (HG) if there exists a constant ¢y > 0 such that for any ball B(xg, R),
there exists the Green kernel gP%(xg,y) and for any 0 < r < R/M, we have

sup  gPR(zo,y) < inf  gPR(zp,y). (HG)
y¢B(zo,r) yeB(zo,r)

Lemma 9.14 (EHI) = (HG).
PrROOF. We prove that if d(zg,z) = d(z¢,y) = R, and B(zg,2R) C D then

Crgn(z0,y) < gn(x0,7) < Cign(xo,y)- (9.11)

Once (9.11) is proved, then (HG) holds by the maximum principle (which holds for Gpf and so for gp as
well). By symmetry it is enough to prove the right hand inequality of (9.11).

Let z', y' be the midpoints of y(zg,z), and v(zo,y). Thus d(zg,z') = d(zo,y’) = R/2. Clearly we have
d(z',y) > R/2 and d(z,y') > R/2.

We now consider two cases.

Case 1. d(z',y') < R/3. Let z be the midpoint of y(z',y’). Then d(z,2') < R/6 < R/4. So applying
(9.7) to gp(zo,-) in B(z',R/4) C B(z', R/2), we deduce that

Cy 'gp(wo,2') < gp(wo,2) < Cogp(zo,’).
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Now apply (9.7) to gp(xo,-) in B(z, R/2) C B(z, R), to deduce that

Cy *gp(w0,2) < gp(0,") < Cogp (2o, ).
Combining these inequalities we deduce that

Cy gp(wo, ) < gp(w0,2) < C3gp (w0, 2),

and this, with a similar inequality for gp(zo,y), proves (9.11).
Case 2. d(«',y') > R/3. Apply (9.7) to gp(y,-) in B(zg, R/2) C B(z, R), to deduce that

Cy'gn(y,2") < gp(y, o) < Cagp(y, ). (9.12)

Now look at gp(z’,-). If 2’ is on (v, y) with d(y',2') = s € [0, R/2] then as d(2',y') > R/3 and d(z',y) >
R/2 we have d(2',2") > max(R/3 — s, s). Hence we deduce d(z’,2') > R/6. So applying (9.7) repeatedly to
gp(z',-) for a chain of balls B(z', R/12) C B(z',R/6) we deduce that

Cy%n(«',y) < gn(',y) < Cogn(a',y). (9-13)
So, we obtain from (9.12) and (9.13),
gp(y, o) < Cogp(y,a") < Clgn(z',y'),  gn(',y") < C3gn(y,") < Cgp(y, o).
We have similar inequalities relating gp(z,z¢) and gp(z',vy'), which proves (9.11). O

Lemma 9.15 Assume that (€, F) satisfies (HG).
1) For any ball B(zg, R) and for any 0 <r < R/M, we have

sup gBR (‘Tan) = R(BTVB;K) = inf gBR(‘Tan)' (914)
y&B(zo,r) yEB(zo,7)

2) Let By, = B(zg, M*r) for k=0,1,---. Then, for any integers 0 < m < n,

n—1
sup 9" (x0,y) < Y R(By, Biyy) = o 9" (z0,y)- (9.15)
Y¥Bm k=m "

PROOF. For 1), first the following is standard (see for example (4.7) in [41]).

sup  gP%(zo,y) > R(B,,Bg) > inf  gPR(zg,y).
y¢B(zo,r) yEB(zo0,7)

Thus, using (HG), we obtain (9.14).
For 2), note first that the following holds by the definition of resistance

n—1

Z R(BkaBl(c:—i—l) < R(B’”HB’ICJ,)

k=m

This and (9.14) implies the lower bound for inf g% in (9.15). Next, by the reproducing property of gZ*, we
know that gB++1(z,.) — gP(z,-) is a harmonic function in By. Thus,

gPr+1 (z,y) — gPr(z,y) < s¢up g5+ (z,2) < cR(Bg, Byt1), Yy € X, (9.16)
z Bk

where the first inequality is by the maximum principle and the second inequality is by (9.14). For y ¢ By,
by (9.14)
g%+ (z,y) < ¢ R(Bpm, Bm1)- (9.17)
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For such y, adding up (9.17) with (9.16) for m < k < n, we obtain the upper bound of sup g®» in (9.15). O

Proof of (VD) + (EHI) + (RES(¥)) = (E(T)).
E[rp,] = / 95" (20, 9)du(y) > / gP% (20, y)du(y) > cR(By, BE)V (z0,7) > c¥(R),
B(zo,r)

where we used Lemma 9.15 1) in the second inequality and (VD) + (RES(¥)) in the last inequality.
Now, for each k € Z, let rp, = M*, By = B(z¢, 7)) and let ng be the minimum number such that R < 7.
Then

Er5,] < E®[rpgag ] = /B 9570 (20, y)du(y)

0
no—1 no—1 no—1

= (w0, y)dp(y) < ¢ R(By,B 1\ B
Py /B L m_zoo(z B 1) (B \ B
no—1 k no—1

= ¢ > (X wBnii\ Bu))R(BrBiy) =¢ Y w(Byi1)R(By, Bip)
k=—00 mM=—00 k=—o00
no—1

< U(res1) < "U(R),
k=—00

where we used Lemma 9.15 2) in the second inequality and (VD) + (RES(¥)) in the third inequality. We
thus obtain (E(0)). O

9.6 Proof of Theorem 3.1: (b) = (a)

Fix o € X and for R > 0, let Bg := B(zo,R). Let Fp, = {u € L*(X,p) : u = 0 p-a.e. on B} and
consider the part of the Dirichlet form (£, Fp,) (see [35] Section 4.4). Let {P°?} be the corresponding
semigroup.

Lemma 9.16 There exists a version of the heat kernel ptBR(w,y) for {PtBR} and, for each e1,e9 € (0,1),
there exists ¢z, ¢, > 0 such that

Br s> _ Ceven
Py (xay) sl V(.’EO,ElR)’
for all z,y € B(zg,e1R) and e2U(R) <t < U(R).
PrOOF. First, define
ptBR(x’y) = pt(x7y) - Ez[ptf’rBR (YTBRay)aTBR S t]a (918)

where Y} is the diffusion process corresponding to (£,F) and 75, = inf{t > 0:Y; ¢ B(zo, R)}. Then, it is
easy to check, using the strong Markov property, that pf (z,y) is a version of the heat kernel for {PtBR}.

The proof of (9.18) is now a standard argument (see, for example, Lemma 5.1 in [34]). O
Let dZ/ = dt ® dp, H = L2(R' x X,dv) and F = {u : R' — F : A(u,u) + HUHH < oo} where
A(u,u) = le E(ult,-),u(t,-))dt. Let F* = {u : R — F*: le |lu(t, )||]_- Ldt + ||u||,H < oo}, where F* is the

dual of}" in the sense F C L?(X, u) C F*. Note that F C H = H* C F*. Let
W = {ueF: 8—6.7:*}

B ot
N o N .
(uw ’Bt) + A(u,v) if ue FveWw,
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where (u,v), = I]Rl Jxuvdpdt. Let {Yy(z)} be the diffusion process corresponding to (€,F). Then the
semigroup corresponding to £ can be written as Pyu(ty, z9) = E[u(to +t, Y;(xo))] so that the corresponding
generator is % + L (the corresponding diffusion is Z; = (t,Y};)), whereas the dual semigroup {P;} can be
written as Pou(to, o) = E[u(to—t, Y;(zo))] and the corresponding generator is —% + L. (See [71] for details.)

Lemma 9.17 Let u be a non-negative solution of the heat equation on Q := I x G, where I = (a,b) and G
is an open connected subset of X. Then u(t,z) > [pf (z,y)u(s,y)du(y) p-a.e. z and all 0 < s < t where
B CCA(.

PROOF. The claim is equivalent to (u — Pt(’zsu)(t, z) >0 for all (t,z) € Q and all 0 < s < .

Let a > 0. Then, ga(u, g) > 0 for all non-negative g € .73Q. So, for any non-negative a-excessive function
(w.r.t. (€,Fg) —see [T1] Section 4.3, for a discussion of excessive functions in the parabolic case) v € Fg,
we have

(u—e *PRu,v), = (u,v—e **P),

= (ug,v—e *P2
> (ug,v—e *P%

), + (Hgu,v — e~ P%),
V), = ga(u, GaQ’U — e_asPsQGSv),, =: I,
where u = ug + Hgu is the orthogonal decomposition of u into Fg & Hg. (see p. 149 of [35] —the
same proof works for the parabolic case). Here the inequality in the third line is because Hgu(z) =
E®(e 7 u(Zyq.)) > 0 (due to Lemma 5.1.3 in p. 105 of [71]) and the fact that v is a-excessive (the
definition of excessive functions in [71] is different from that in [35], but the proof of Theorem 2.2.1 in [35] also
establishes equivalent conditions for the parabolic case, too). Since GSv — e PGy = fos e*alPleudl €
Fq is non-negative on @), Iy > 0. Thus u — e P2y > 0 on Q. Since this holds for all @ > 0, we have
u> Py on Q. O
Once these properties are established, then proving (a) is standard; prove the oscillation inequality first
and then use the inequality to establish (PHI(¥)). Indeed, the proof of Lemma 5.2 and Theorem 5.4 in [34]
work line by line, with suitable changes of the scaling exponents.

9.7 Proof of Theorem 3.1: (a) = (b)

There is a standard argument, given in [73] and Section 5.5 of [72] which proves that (PHI(¥)) implies (VD),
(PI(¥)), and (HK(¥)). See also [46] for the case U(s) # s2. However, as this argument uses existence and
regularity of caloric and harmonic functions, we will give more complete details of the initial stages of this
argument.

First, if f € L?(X, ) we have that P;f € D(A), and v(t,z) = P,f(z) is a solution to the heat equation
in X x (0,00). Let z € X, ¢ >0, r = ¥(t) and f > 0 with [ f = 1. Then applying (¥(¥)) in Q =
(0,4t) x B(z,2r) we obtain

supv < Cinf .
Q- Q+

Hence if B = B(z,r) then since [ Pf =1
p(B)supd < C | v(2t,y)uldy) < C.
Q- B

Thus for each £ € X we have

Pif(z) < c(®)l|f]]r-

Given this inequality, we can use the same arguments as in p. 52 of [7] (using the results in [79]) to deduce
the existence of a transition density pi(z,y).
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Lemma 9.18 There exist an exceptional set N and a jointly measurable transition density pi(z,y), t > 0,
z,y € (X \ N) x (X \ N), such that

Pz, 4) = / iz, y)u(dy) Vo€ X\ N, V>0, VA€ B(X \N),

A
pt(x,y) = pt(y,x) V.T,y,t,
Prrs(@,2) = / po(o, oy Duldy) Va2t s,

Since pi(z,y) = Pyjopy/2(-,y)(x) it follows that py(-,y) is a solution of the heat equation. Now take a quasi
continuous modification py(z,y) w.r.t. z and use it in the procedure of (4) in [79]. Then, by Theorem 1
in [79], there exists py(x,y) which is quasi continuous and satisfies the three equalities in Lemma 9.18. (In
fact, the uniqueness criteria in Theorem 1 in [79] shows that this p;(z,y) is the same as the original one.)
Thus it satisfies the (PHI(¥)), and so can be extended to (0,00) X X x X as a jointly continuous function.

We now sketch the argument that (PHI(¥)) implies (VD), (PI(¥)), and (HK(¥)). We begin with (VD),
which also gives a key lower bound on the transition density for the killed process. Applying the (PHI())

to the function u(t, z) = py(zo, ) in the region Q(zo,0, R) we obtain (writing 7' = ¥(R))
pQT(fL'Oa-TO) < CP4T(5E0ay), Yy e B(‘/EOaR)

Integrating over B(zg, R) gives

par (%0, o)V (70, R) < C/ u(4T,y) <, (9.19)
B("'CO’R)

which gives an upper bound on per(zg, o) in terms of the volume of balls.
To obtain a lower bound, write By = B(zg, AR), and let ¢ € F be a cut-off function for Bs/y C Bs. Let
p?(z,y) be the heat kernel for the process Y killed on exiting By. Define

(t2) = o(z), x € By, 0 <t <2T,
e = fB3 PY_or (@, y)ey)u(dy), =€ By, 2T <t <A4T.

Lemma 9.19 u is a solution of the heat equation in Q(xo, T, R).
PROOF. The function u(z,t) = % exists for ¢ > 27", and is zero for ¢t < 27T. Since u(z,t) is continuous at
t = 2T for z € B, it is straightforward to check that wu; is the derivative of u in the Schwartz’ distribution

sense.
Since we have u(t,-) € D(A) for all t > 2T, we have for f € F N C(X) with support in By that

/fut dp = —E(f,ul(t,-)), t > 2T. (9.20)
If ¢ < 2T then since u = 1 on By (9.20) also holds for ¢ < 2T'. Thus it follows that (3.3) holds. O

We can now, as in [73, 72, 46|, use (PHI(¥)) in Q(zo,0, R) to obtain

1 = u(y, 2T) < culwo, AT) < / 22 (z0,), y € B(wo,R). (9.21)

B3

Using (PHI(¥)) in a chain of regions Q(y;,t;,r) C [0,4T] x B(zy,4R) we obtain

P30 (70, y') < epir(z0,y), ' € B(z0,3R), y € B(zo, R). (9.22)
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Integrating (9.22) over y' € Bs gives

/B (@0, 9 u(dy') < eplp (20, 20)V (20, 3R),
3

and combining this with (9.21), we deduce that
V(:L‘Oa 3R)_1 < CpgT($07 y)a y e B(x(b R) (923)

The inequalities (9.19) and (9.23) control pi(zg,zo) from above and below in terms of the volume of balls,
and since t — py(zo,zo) is decreasing one easily deduces, by the same arguments as in [72], that volume
doubling holds.

Given the lower bound (9.23), the proof of (HK(¥)) now follows as in Section 5 of [46] and in the proof
of Proposition 4.1. For the global lower bound one uses (9.23) and a standard chaining argument (Step 5
of the proof of Proposition 4.1). (9.23) gives uniform control of the probability that Y exits a ball radius r
before time ¢t = ¥(r), and using this the upper bounds on p;(z,y) follow as in p. 1472-1475 of [46].

We remark that (9.23) also gives a lower bound on the transition density of the process Y reflected at
OB (see [26]). Using this the argument of [73] can be used to obtain (PI(T)).

Remark. The equivalence (a) <> (b) is well-known for manifolds when ¥(s) = s2. For MMD with ¥(s) = s2,
it is indirectly proved in [75]. (There it is proved that each condition is equivalent to (VD) + (PI(2)).) For
MMD with general time scaling, [46] proves the equivalence assuming apriori that solutions to the heat
equation are sufficiently regular. (See also [41] for the case of an infinite connected weighted graph.) We
have proved the equivalence without assuming any apriori condition for solutions to the heat equation.

9.8 Proof of Proposition 4.5

This first step is to use (CS(¥)) to obtain the following weighted Poincaré and Sobolev inequalities, which
will replace (2.5) in the iteration argument in subsection 2.4.

Proposition 9.20 (Weighted Poincaré inequalities) Let I = B(x,s) with s < R. Suppose f and its gradient
are square integrable over I* = B(z,2s). Let fq = u(A)~! J 4 fdp.

(a) We have

/f dy <ei(s/R)PU(R / dr(f, f) + ¥(s / 12 du (9.24)
(b) We have

[~ foray < alsiR?w®) [ v, ) (9.25)
I I*

(c) If J C I, then

[ £av<am@vm [ an+uo ([ ne)

J

(d) We have
/ dy < ¢4V (zg, R).
B(z‘o,R)

PROOF. (a) Using the definition of v and (3.5),

/ iy = /I f2dp+ O(R) /1 F2dr(f, §)

< / f2dp + cs(s/R)* T (R) / dU(f, f) + cs(s/R)*U(R)T(s) [ fidp.
I I*

I*
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Since B > 3 > 260, and s < R this implies (a).
For (b), applying (9.24) to f — f1~ we have

[ = erar<atsmPe@) ([ v v [ - k). (9.26)
Using (PI(¥)) applied to the ball I* we have
[ 0= s exvts) [ anis.p.
I I8

Substituting this into (9.26) gives (9.25).
(c) Now let b= [, fdvy/ [; dy. Then

/Jf%h - /J(f—b)zdwrb?/Jdv
[ =teyan+ ([ o) ([ ran)

/I(f —fz*)2d7+u(J)_1(/J\f\d7)2

AN

IN

Using (9.25) to bound the first term of the above inequalities completes the proof of (c).
(d) follows from (a) by taking s = R and f =1, and using (VD). O
Our next result is a weighted Nash inequality. Recall that for any set J C X, J* := {y : d(y,J) < s}.

Proposition 9.21 (Weighted Nash inequality) Let s < R and J C B(xg, R) be a finite union of balls of
radius s. Suppose the gradient of f is square integrable over J° and st f2dy < co. There ezist ¢ < co and
ay € (0,1) such that

_1/Jf2d’ySC1 ((R)u(I)™ /, dr(f,f) + (s/R)” /fzd7 —on [u(J)‘1/J|f|d7]2“1_

PROOF. Suppose that 0 < ¢ < s. Using Lemma 9.2, we can cover J by balls B(z;,t) with z; € J so that
any point of J* is in at most Lo of the balls B(z;,2t). Set B; = B(x;,t) N J and B = B(z;,2t). Then
U;B; = J, UiB* C J*, and ) u(B}) < Lou(J?).

As J is a union of balls, for each i there exists y; so that d(x;,y;) = t/2 and B(y;,t/2) C J. Then by

(9.1),
p(J) w(J) R\°
p(Bi) = p(B(yit/2)) e (t) : (9.27)

By Proposition 9.20 (c), and (9.27)

[ < [ ra

< aW/RPIRY [ dr(f,f)+2@( / | |f|d7>2
< alt/RPURL [ 0+ (R / fldv)”
< /PR [ a0+ el R / Tldv)”
Hence
-1 / F2dy < es(t/R)P A + (R/t)*B], (9.28)
J
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where

A= [wmu(n [ v+ oy [ el 5= (w7 [ i)

Ift > s, (9.28) is obvious.

We choose t so that the two terms on the right hand side of (9.28) are equal. Thus (t/R)?**® = B/A
(so (t/R)? A = A1—20/(20+a) B20/(20+0))  and substituting this into (9.28) completes the proof, with aq =
260/(26 + ). Note that if § = 1 and o = d we obtain the powers in the standard Nash inequality. O

It is known that the Nash inequality is equivalent to the Sobolev inequality ([78, 25]). Using the fact,
we obtain Proposition 4.5.

9.9 Proof of (4.27)
Without loss of generality, we multiply « by a constant so that V(z, R)™! i) B(zo,R) logv = w = 0. Recall
that v is either u or u~! and define ®(t) = ess supg 4 log v.

Lemma 9.22 Letl1 >s>t>0. Then

D(s) < %(I'(t) +c1(s — )61, (9.29)
PrROOF. Fix t and write @ for ®(t). Let co > e satisfy co = 6logce. If ®(t) < co, then

1
q>( ) =+ 1025

%Iw

D(s) < (1) <

so that (9.29) holds provided ¢; > ¢3/4.
Now suppose ® > cy. From Proposition 9.20 (d) we have fQ(t) dy < c3V(zg, R). By Proposition 4.9 (b)

and the fact that vP < eP® on Q(t),

/ vPdy = / 'U2pd'y+/ v?Pdry
Q(t) Q(t)n{logv>®/2} Q(t)n{log v<®/2}

< 62”‘1’/ d7+e”q’/ dry
Q(t)N{log v>/2} Q(t)N{log v<®/2}

2p® 2p®
V(zo,R) + epq’/

dege € IS
< —_— P2 Y .
Q(t) d")’ Cy ( (I) + e ) (.T(), R)

< 7
Let p = Zlog ®, so that e?® = ®%. As ® > ¢, we have p < (2/cz)logey = 3. So
p®

vPdry < cseP® (1 + —) = 2c5eP?.

V(wﬂaR)l/ 3?

Q(t)

Therefore by Corollary 4.8,

1 1
O(s) = %log[ess supQ(s)'UZP] < glog [06(3 — 1)~V (zo,R)! /Q(t) fuZpdfy]

1 _ log(cr(s —t)™1)1®
— — )G eP?| = g7
< 2p log [67(8 f)"e ] [1 + 2log ® ] 2° (9:30)

Without loss of generality we may take c; larger than cp. If ®(t) > cy(s — t)~¢, then by (9.30)

®(s) < 2®(t), and (9.29) is satisfied. If, on the other hand, ®(t) < c7(s —t) <, then since ®(s) < &(t), we
have (9.29) satisfied with ¢; = ¢7. O
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PROOF OF (4.27). Multiplying u by a constant we can assume | Blao,R) logudy = 0 as before. Choose
tj =1/(j + 1), so that to = 1 and ¢; | 0. Then by Lemma, 9.22,
(I)(to) < %@(tl) + CQ(tO — tl)_Cl
(3)2®(t2) + calto — t1) ™ + 3ea(ts — t2) ™%
< (DP0(ta) + X (D) ea (i — ),

for any n > 0. Since ®(t,) < ess suppgy, r)logv < 0o, and

<
<

o0

Z(%)i_lw(tiq — ;)7 = ¢3 < 00,
i=1

we obtain (4.27). O
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