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X: locally compact separable metric space (diam X = o0)

(€, F): reg. local Dirichlet form on L*(X, )

—A, { X} the corresponding non-neg. S.A. operator and the diffusion.
e Elliptic Harnack inequality (EHI): Jeg > 0 s.t. VB(z, R),

Vu: non-negative harmonic fu. on B(z, R) (i.e. Au(x) =0 for x € B(zx, R)), then

sup u <cg inf w. (EHI)
B(z,R/2) B(z,R/2)

Let 8 > 2 and denote V(z, R) := u(B(z,r)).

e (Sub-)Gaussian heat kernel estimates:

€4 d(z,y)’ Cs d(z,y)?
Bz 677) exp(— cat ) < pi(z,y) < 1(B(z. 077)) exp(— oot ). (HK(2))
€4 d(az,y)ﬁ -4 Cs d(aj,y)ﬁ L
1(B(x, t1/9)) exp(—( it )7T) < prlw,y) < Bz, 07)) exp(—( ot )5-1).



/ﬂi
— %R

o Let Q = Q(wo, T, R) = (0,4T) x B, 2R),

Q_(T,2T) x Bz, R) and Q. = (3T,4T) x B(xg, R).

Parabolic Harnack inequality (PHI(3)): Jcg > 0 s.t. the following holds.

4T

3T

2T

Let 70 € X, R>0,T = R’ and v = u(t,z) : Q — R, satisfies %—2‘ = Au in Q. Then,

sup u < cginf u.

Q—

Q+

(PHI(5))



(HK(8)) < (PHI(4) 0000000000000 OOOOCO

o cit"/P < E[d(x, X)) < et'? (3>2.0000)

oDDDDDDD[Mehmwmmwﬂﬁghmzafmwﬂ

e 0000000 HolderD OO
e00D0O0DODODOD (EHI)

e Liouville property (i.e. positive harm. fu. on X is const.)
Indeed, if m, := infx u, then by (EHI), supg(u — m,) < cinfg(u — m,) — 0 as

B — oc0. Sou =m,, p-ae.
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00 Divergence form £ =) /', %(aij(az)ﬁ) on R"
) 7 J

satisfying the unif. ellip. cond. (ie. 7' < a(-) < ol for Jo > 1).
e De Giorgi ('57), Nash (’58) [70]: Holder cont. for elliptic/parabolic functions
e Moser ('61,'64,’71) [69,68,67]: Harnack ineq.
e Aronson (’67) [2]: (HK(2))
e Krylov-Safanov (’80): Prob. proof for Harnack
e Davies ('81, 87, ’89) [32,31]: Off-diagonal upper estimates
e Fabes-Stroock (’86) [34]: A new proof of Moser’s PHI using the old idea of Nash.
e Carlen-Kusuoka-Stroock (’87) [25]: equiv. of the Nash inequalities

e Li-Yau ('86) [65]: smooth non-cpt compl. R-mfd, non-neg. Ricci, A = (HK(2))



e Grigor'yan (’92) [39], Saloff-Coste ('92) [73]: (HK(2)) < (VD) + (PI1(2))

e Biroli-Mosco (795) [20], Sturm (795,°96) [75,76], Delmotte (’99) [32]: extension to

Dirichlet forms on meas. met. spaces and graphs

(A) Volume doubling (VD): V(z,2R)) < 1V (z, R), Vee X, R>0.
(B) Poincaré inequality (PI(8)): dco s.t. VB = B(x, R) C X and Vf € F,

2) — ) 2du(z) < coRE R where f :L T x).
[ (5@ = FoPdute) < aREs(f.). where Ty = — [ flauta). (P1(8)

Sub-Gaussian case
e Grigor'yan-Teles ('01,’02) [42,41], Barlow-Bass ('03) |9]
e Kigami ('04) [57], Grigor'yan (’05) |30]

e Barlow-Coulhon-K ('05) [15], Barlow-Bass-K (705) [14]
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2.1 The Nash inequality

X: locally compact separable metric space
(€, F): Dirichlet form on L*(X, )

—A, {P}: the corresponding non-negative self-adjoint operator and the semigroup

Theorem 2.1 (The Nash inequality, [25])
The following are equivalent for any 6 > 0.

1) There exist ¢1,0 > 0 such that for all f € F N L,

LAIZ < el (ECF )+ SIFIDIAIYY, (Nash)

where || fllp = ([ |f[Pdp)'/”.
2)Vt >0, P(L') C L™ and it is a bounded operator. Moreover, dcy, 0 > 0 s.t.

||PtH1—>oo S Cgedtt_e/Q, vt > 0.



PrROOF OF THEOREM 2.1:
1) = 2): Let f e L*N LY with || f]l1 = 1 and u(t) := (P.f, P,f)2. Then,

AN L (Bf + B Panf — Pif)o = (Peaf + Bf, =D,

25 APS AR )y = =28 (RS, Pif).

Hence u/(t) = —2E(P.f.P.f). Now by 1),
2t 210 < ey(—at (1) + 26uD)| P < exl—u(8) + 25u(t)),
because || P f|l1 < ||f|l1 = 1. Thus,
22ty (1))H20 < 262ty (1) 120 < ¢y (e Pluy(1)).

Set v(t) = (e=2Mu(t))~2/? then v/(t) > 4/(c16). Since limy g v(t) = u(0)~%¢ > 0,

it follows that v(t) > 4t/(ci0). This means u(t) < 2?72 where ¢y = (¢,0/4)%/2.



Hence

|Pifllz < eset " £, vfeL’nL!,
which implies || 2|12 < c3e®t~%%. Since P, = Pyjg 0 Pyjg and ||Pyjallim2 = || Pijall2—oos
we obtain 2). .

Remark. Generalization of Theorem 2.1: by Coulhon [28], Tomisaki [77] etc.

See subsection &.1.



2.2 The Davies method

F.={h+c:heF,ceR}

Foo={th € F:e 2T(e?, ) < p,e2T(e ¥, V) <« u}.

Theorem 2.4 (Carlen-Kusuoka-Stroock [25], Theorem 3.25)
Assume (Nash). Then, dc > 0 s.t. Vp € (0,1],

—0/2€—E((1+p)t,x,y)+5pt

pi(z,y) < c(pt) fort >0 and x,y € X,

where

E(t,z,y) = sup{[t(z) — ¥(y)] — tA(Y)" 1 Ae) < oo}

with
de 2'TI'(e¥, e¥)
ar

oo, ||

AW = max{ | N

dpt

(2.4)



000000 Stepl000DO0VS € F,Vpe[l,o0)000 ([25], Theorem 3.9) O
EV eV f) = p E(f f7) = IpA W) (I f |15
Step IL: fi(z) = e'@[P(e ¥ f)(zx) 000000000 Nash)DOODOODOOOO
0 _
ol fillsy = =2pE( £ e ).
Step I 000000000000 O0O ([25], Lemma 3.21)0 !

Upper bound0 000 L=} " 5 % (a;j(z)s=) on R" satisfying o' < a(-) < ol
i j

for 3o > 1. In this case, (Nash) holds with § = n, § = 0 and
A@)* = sup(Vi(2), a(2)Vi(2)).
Let p = 1. Taking ¥(x) = 0 - x for some § € R" in (2.4), we get

pul,y) < cit™ PP exp(8 - (z —y) +2||0|*at).



Optimize: 6 = (y — x)/(4ot), we obtain

—d/2 ly — 55‘2

pi(x,y) < et Y exp(— ),

and the Gaussian upper bound is obtained.

bbb otdug

dg(2,y) = sup{(e) — Y(y) - ¥ € Fuo NC(X), A(®) < 1},

This is a metric and sometimes called an intrinsic metric. By a simple computation,

de(z,y)?
E ]‘ p— .
(ot 41+ p)t
So, we conclude
de(x, 2
p(e.y) < erlpt) 2 exp(~E LY

414 p)t
Remark. For 3 > 2 [0 this method does not work! Indeed, for diffusions on ‘typi-

cal’ fractals, the energy meas. is singular to the Hdff. measure (|47,61]) so de(x,y) = 0.



2.3 Moser’s arguments

X: Riemannian manifold
A: the Laplace-Beltrami operator satisfying (Pl(ﬁ))

1 the Riemannian measure satisfying ¢ir® < pu(B(z,r)) < cor®, Ve € X, r > 1.

f £ =uip / fu
(PI(8)) = (2.5): the Sobolev inequality
f P <ar'f VIR 1 e B, 25

Here k = a/(a — 2), a =3V a.

AL(f, f) = |V fPdp for f € F.
Let u > 0 be harmonic on B, v =u? for p > 0, 1/2 < as < a1 < 1, B; := B(xg, a;R).

© € C§°(B1): a cut-off function for By C By.



By “converse to the Poincaré inequality” (see Lemma 4.6 below),

Vol < el Vel / (2.6)

B By

Using (2.5) with f = v and (2.6),

(][ uPLUR < 03R5][ Vol < 03R5][ O’ |Vl < C4R5HV§0H?>O/ V2.
By By By By

d(x,B°)

Take “classical” cut-off function p(z) = Rlaay) = |Vpl]2, < o a2)2 3. Thus
(][ W PVE < RV (ay — a2)2][ u? (2.7)
By B

Let ap == (14 27%)/2, p;. := pk" and By, := B(wg, aiR). (Then ap — ap1 = 27772)
Set Iy, .= (:FBkﬂquk)l/(Qp’f). Then, by (2.7) we have

Iy < (C7Rﬁ_222k>1/(2pk)[k.
By iteration (this part is the first part of Moser’s argument), we have

Ik Hg{ 01<C7Rﬂ 222l>1/(2pl)[ < CgR G )[0



The last inequality is due to >, k7 < oo and >, Ik~ < 00, because x > 1.

Take k — o0. Since pp. — oo and u is continuous, we have

sup  u(y) < CSRC/(ﬁ_m(][ W) = RYO-2p(2p, B).
yEB(xO,R/Q) B

Taking v ! instead of u, we have

inf  uly) > LR P Dp(—2 . B).
ept (y) > ¢4 (—2p, B)

Now, let 3 = 2. (The second part of Moser’s argument; comparison between ®(2p, B)
and ®(—2p, B).)  Let w :=logu.

A) f,Vul < eu(@)/R? (Prop 4.9 (x))

B) (The John-Nirenberg ineq. (Exp. integrability of BMO functions).)

Qo: acube. If f € LY(Qy) satisfies J%|f — fol £ 1, VQ C Qo (such functions are called
BMO fu.), then 3¢, > 0 s.t. f5 exp(cf) < ¢



Using Schwarz, (PI(2)) and (A),

<][Q w — wgl)? < ][Q w— wol < o(R/u(Q) /Q Vul? < C.

So, applying (B), we obtain

][qu = ][ exp(qow) < ¢, ][U_qo = ][ exp(—qow) < ¢
B B

for some qg > 0. Taking p = ¢p/2, we conclude

sup u < 1 P(qo, B) < coP(—qp,B) <c3 inf uw = (EHI). =&
B(zq,R/2) B(z0,R/2)

Remark. If 3 > 2, one still obtains an L*> bound on u in B(x, R/2), but the constant
now depends on R, so that the final constant in the (EHI) will also depend on R!

As we see, the problem arises in the first (‘easy’) part of Moser’s argument. Instead of
the linear cut-off functions, one needs cut-off functions such that the term R2 in the

right hand side of (2.7) disappears.



3 Framework and main theorem

3.1 Framework

Metric measure spaces (MM)

(X, d): connected loc. ept compl. sep. metric space (d: geodesic)

p: Borel measure on X s.t. 0 < u(B) < oo, VB # )

B(x,r)={y :d(z,y) <r}, V(z,r) = pu(B(z,r)).

For simplicity, assume diam X = oo.

Metric measure Dirichlet spaces (MMD)

(X, d, p): MM space, (&, F): regular, strong local Dirichlet form on L*(X, )
A: corresponding (non-positive) self-adjoint operator (E(h, g) = — [ Ahgdu)
{P}: corresponding semigroup

Assume that (£, F) is conservative (i.e. P1 =1, Vt>0).



I'(f, g): signed measure

Ve Fy, JIL(f, f): Borel measure (the energy measure) satisfying

[;mwﬁﬂ=ﬂaﬁfm—5q%m, geF,

(Rem: We take the quasi-continuous modification of g € F} without writing g.)

[(f.9) =50 +9.0 +9) =T /) ~T(g.9),  frg€F

Leibniz and chain rules: if fi,..., fi, 9,0(f1, .-, fn) € Fo,

dU(fg,h) = fdI'(g, h) + gdU'(f, h),

dr(SD(fla---afm)vg): ' x(fla"'afm)dF(fi)g)’

oY = (Y;,t >0,P" x € X}: diffusion process associated with (£, F) on L*(X, p).



Examples. 1. X: Riemannian manifold, d: Riem. metric, p: Riem. measure.

C: C* functions on X with compact support,

(.5 = [ 19fPdn sec
&: completion of C with respect to the norm || f||2 + E(f, f)V2, dT'(f,g) = Vf - Vg dpu.

2. Cable system of a graph. (G, E,v): a weighted graph
Define the cable system G¢ by replacing each edge of G' by a copy of (0, 1).
p: measure on G'o given by du(t) = vy, dt

C: the functions in C(G¢) which have compact support and are C! on each cable

E(f. f) = /G P Pdu(t).



3. D: a domain in R? with a smooth boundary

C := C3(D), u: Lebesgue measure, and

(.5 =4 [ 194Fd

The associated diffusion Y is Brownian motion on D with normal reflection on 0.D.



4. Diffusions on fractals. F C R% connected set with diameter 1
Suppose 3d geodesic metric on F. p: Hausdorff a-measure on F' (with respect to d)

Suppose that u(B(z,r)) <r®*, x€ F,r>0. Let

Nosolf) = sup o2 / / Lt (@) | £(2) — f()Pdp()dply)

0<r<1
A (F) = {u € L*(F,p) : (u) < oo},
There exist many fractals satisfying the above with a Dirichlet form & on L?*(F, u) for
which the domain F of £ is given by Ag/oi(F), and E(f, f) < Nyoolf).
F = Fgq: (compact) Sierpinski gasket, F),: set of vertices of triangles of side 27"
xr ~ y < x and y are in some triangle of side 27", Then, with 8 = log5/log 2,

E(f, f)=clim (5/3)" Y (flx) = fy)*s | €M),

T~y



Weighted graphs (G, F): an infinite locally finite connected graph, x ~ y < (z,y) € E.

{12y o yea: edge weights (conductances) iy = fiye > 0, fyy > 0z ~ .

p: p(A) =) cq By, Where pig i= > piyy,  d: graph distance

(G, ) has controlled weights (pg-condition) if there exists py > 0 such that

@ZPO, Ve~y€eG.

X



The Laplacian and the Dirichlet form are defined on (G, u) by

Af(z) = izuwv@) ~ f(@)).

E(f.9) =35> > (flx) = fW)gx) — gy, frg € F = LG, p).

If f € F we define the measure I'q(f, f) on G by setting

Calf, F)@) =Y (f(x) = f(y)tay.

Yy~

oY = {Y;};>0: continuous time RW on G associated with £ and the measure pu.
Y is called the simple random walk on G if ji,, = 1 for & ~ v.
Y waits at x for an exponential mean 1 random time and then moves to a neighbour y of
x with probability proportional to fi,,.

q:(+, -): the transition density (heat kernel density) of Y with respect to y;

@z, y) =P (Y =y)/py. (3.1)



3.2 Inequalities

(X, d, i, E): MMD space
Let 3,3 > 2 and

s7 if s <1
s? ifs>1.

U(s) will give the space/time scaling on the space X.
(I) Volume doubling (VD):
V(z,2R) < 1V (x, R), Vee X, R>0.

(VD) implies that dci, a0 > 0 s.t. if 2,y € X and 0 < r < R, then

V(z, R) dlx,y)+ R,
Vi(y,r) cal=— )

See subsection 9.1 for other consequences of (VD).

(3.1)

(VD)

(9.1)



(IT) Poincaré inequality (PI(W)): Jeo s.t. VB = B(z, R) C X and Vf € F,

/B (F() — FuPdulz) < c;U(R) / AL(f, f), (PI(V))

where f = p(B)~" [ f(x)du(x).
(IIT) w is harmonic on a domain D if u € Fj,. and E(u, g) = 0 Vg € F with support in
D. (u € Fioe & V G rel. compact open, Jw € F s.t. u=w p-ae. on G.)

Elliptic Harnack inequality (EHI): Jeg > 0 s.t. VB(x, R), Vu: non-negative harmonic

function on B(zx, R), 3 a quasi-continuous modification @ of u that satisfies

sup u <cz3 inf . EHI
B(z,R/2) 3B(rc,R/2) (EHD

Remark. A standard argument (see subsec. 9.3), (EHI) implies @ is Holder continuous.



Q_(T,2T) x B(xg, R) and Q. = (3T,4T) x B(x, R).

Parabolic Harnack inequality (PHI(W)): Jeq > 0 s.t. the following holds.

/ﬂi
— %R

(IV) Let Q = Q(z, T, R) = (0,4T) x By, 2R),

4T

3T

2T

Let zp € X, R>0,T =V(R), and u = u(t, x) : Q — R, satisfies % = Au in Q.

1 a quasi-continuous modification @ of u (for each t) that satisfies

sup u < ¢4 inf u.

Q—

Q+

(PHI(W))



(V) A, B: disjoint subsets of X. We define the effective resistance R(A, B) by
R(A,B) ! = inf{/ dU'(f,f): f=0on Aand f=10on B, f € F}. (3.4)
X

(RES(W)) dcy,c9 > 0s.t. Vg € X, VR > 0,

V(R)
V(.‘Eo, R)

V(R)
V(ZEQ, R>

(RES(W))

C1 < R(B(I‘Q, R), B(I‘Q, 2R>C) <

(VI) (CS(\W)): 30 € (0,1], deg, ¢o > 0 s.t. the following holds.
Vzy € X, VR > 0, 3 a cut-off function ¢(= ¢,, r) with the properties:
(a) p(x) > 1 for x € B(xy, R/2). (b) ¢(x) =0 for z € B(xy, R)".

(¢) le(x) = ()| < aerld(z,y)/R)’, Va,y € X.
(d) For any ball B(x,s) with 0 < s < Rand f € F,

/B(:z;,s) f2d0 (i, ) < 62<3/R)2(9(/

B(x,2s)

AT(f, )+ U(s) ! / Pp). (3.5)

B(x,2s)



(VII) For (t,r) € (0,00) x [0, 00), let
0

t )1/(5—1)»

N =A{t,r): t<1Vr}, N={{tr):t>1Vr} gslrt)=exp(—(

(HK(W)): the heat kernel py(z,y), x,y € X and t € (0, 00), exists and satisfies

cags(cad(a, y)., 1
Vi, t7)

0195(02d(937 y),t)
V(z, t1/9)

Clgﬁéiiafggf?ﬁy))’t> < pi(z,y) < ngﬁv(ifg?ﬁy))’ﬂ’ V(t, d(z,y)) € Ao (3.7)

< pt(xa y) <

V(t,d(x,y)) € Ay, (3.6)

Let h(r) ;== U(r)/r. Then, (HK(¥)) is equivalent to

C1  od(x,y) N C3 ety ( cyd(x,y)
Vi e 1) P ) =P S Ve h1<t/d<x,%>>>;
3.8

Vz,y € X and t € (0, 00) where we let d(z,y)/h~(t/d(x,y)) = 0 if d(z,y) = 0.
(LHK(W)): the first inequality of (3.8), (UHK(V)): the second inequality of (3.8).



(VIIT)  (VD)ioe: (VD) holds forx € X, 0 < R < 1.
(PL(8))ioe, (EHD10¢, (CS(8))ioe, (PHI(3))10c — define similarly.

(HK(3))10c: We require the bounds only for ¢t € (0,1) — so only (3.6) is involved.

C

(IX) (a) We call ¢ a cut-off function for A; C As if o =1 on A; and is zero on A$.
(b) <PI)10CZ Ve > 0, Jeo > 0 s.t.
[ #@) = Folduto) < o [ aris.s)
for any ball B = B(x,c1) C X and f € F.
(¢) (CC)oe: Vxp € X, I a cut-off function p(= ¢,,) for B(xp, 1/2) C B(xg, 1) s.t.
/ CZF(Q&, 90) S CgV(SIZQ, 1)
B(x()vl)

Remark. (PI(3))ic for 3> 2 = (PDe, (CS(8))1oc for B > 0 = (CCO)yge.
Weighted graphs with contr. weights = (PDioc, (CCioe, (PI(3))10e; (CS(8) )10c for 3 > 2.



(X) (BE(¥)): Vay € X, VR > 0,

61\11<R> S ExO[TB(x(),R)] S CQW(R),

where 74 = inf{t > 0:Y; ¢ A}

(E(¥)>) : the first inequality in (E(W¥)),

(E(¥)<): the second.



We summarize the conditions we have introduced:

(VD) Volume doubling

(PI(W)) Poincaré inequality

(EHI) Elliptic Harnack inequality
(PHI(W)) Parabolic Harnack inequality
(RES(W¥)) Resistance exponent

(CS(V)) Cut-off Sobolev inequality
(CC) Controlled cut-off functions
(HK(¥)) Heat kernel estimates

(E(\)) Walk dimension

When 3 = 3, we would write (...(3)) instead of (...(\0)), for instance (PI(/3))
instead of (PI(W)).



3.3 Main Theorems

Theorem 3.1 X: MMD space or infinite con. weighted graph with contr. weights.

The following are equivalent:

(a) X satisfies (PHI(V)).

(b) X satisfies (HK(WV)).

(c) X satisfies (VD), (PI(V)) and (CS(V)).

(d) X satisfies (VD), (EHI) and (RES(V)).
( (

(e) X satisfies (VD), (EHI) and (E(V)).



Stability We discuss two kinds of stability of (PHI(W)).

Definition 3.2 A property P is stable under bounded perturbation if

whenever P holds for (EV, F), then it holds for (€, F), provided

AEV( ) < EDf ) < €V f),  fordl feF. (3.9)

Lemma 3.3 (Le Jan [64]) X: MMD space. Suppose (EV, F),i = 1,2 are str. loc.

reg. D-forms that satisfy (3.9). Then the energy measures 'V satisfy
adlY(f, ) < dDO(f, ) < edUV(f, f),  forall f € F.

By this lemma, PI(V) and C'S(V) are stable under bounded perturbations.

Theorem 3.4 Let X be a MMD space. Then (PHIV)) and (HK(V)) are stable

under bounded perturbations.



Rough isometry (M. Kanai in [52.53])

Definition 3.5 (X, d;, u;),7 = 1,2: a MM space or a weighted graph.

v : X1 — X9 18 a rough isometry if dc; > 0,c9,c3 > 1 s.1.

If 3 a rough isometry between two spaces they are said to be roughly isometric.



Stability of (PHI(W)) under rough isometries.

Theorem 3.6 X;: a MMD space satisfying (VD)ioc+ (Pl)ioe or a weighted graph with
contr. weights. Suppose o : X1 — Xy rough isom. Let V;(s) = s@l{sgl} + 351{321}.
(a) Suppose that X satisfies (PI(32))1oc.

If Xy satisfies (VD), (CC)oe and (PI(Vy)) then Xy satisfies (VD) and (PI(Ws)).

(b) Suppose that X, satisfies (CS(32))oc.

If X1 satisfies (VD) and (CS(Vq)) then Xy satisfies (VD) and (CS(V,)).

So, (PHI(W)) is stable under rough isom., given suitable local reg. of the two spaces.
Examples 1) S.G. graphs in the last page satisfies (PH I (log5/log2)) for R > 1.

2) Fractal-like manifold in P 21:  2-dimensional Riemannian manifold

L= 222 il %(am(aﬁ)%) on the manifold which satisfies the uniform elliptic condition
enjoys (HK (2)) for t <1V d(x,y) and (HK(logh/log2)) for t > 1V d(x,y).



4 Proof of Theorem 3.1

Recall that h(r) = U(r)/r. We give some inequalities.

pilw.y) < 5 (5,;7(&}1 o Vo, y € X,t > 0. (DUHK (1))

P (g < 1) < Chexp (— h—i?;f;r)>’ Vo€ X,rt> 0. (ELD(W))
pilz, z) > V(gj’%_l(t)), Vo € X,t > 0. (DLHK(T))

p(T,y) > V(:C,iSl(t))’ Ve,y € X,t >0 with V(d(z,y)) < Cst. (NLHK(V))

4.1 Proof of (e) = (b)

For simplicity, we assume the existence of the (cont.) heat kernel and prove the following;

(VD) + (DUHK (V) + (EHI) + (E(V)) = (HK(V)).



STEP 1: PROOF OF (E(V)) = (ELD(V)).

Lemma 4.2 (Barlow-Bass) {;}: non-negative random variables.

Suppose 30 < p < 1,a >0 s.t.

P& <tlo(&, -, &-1) <p+at, vt > 0.

ant 1

= logP() & <t) <2 p )1/2—7%10%];-
1=1

PROOF. Let n be ar.v. with distri. P(n <t)= (p+at) A 1. Then,

(1-p)/a
E(e ™ |o(&r,---,&1)) < Be ™ =p+ / e Madt < p+a\~.
0

S0, P(Z &< t) = Ple M6 > M) < MEe A Xin b
i=1
< eMp+ar)" < pTexp(At + %)

The result follows on setting A = (an/(pt))"/2.



PROOF OF (E(V)) = (ELD(V)). We first prove that 0 < Je¢; < 1,dcy > 0 s.t.
P (tpury <8) <1—ci+cos/h(r) foral ze€ X, s>0. (4.1)
Indeed, by the Markov property, for each x € X we have
E* Ty < 5+ Ex[1{TB(Q:’T)>S}EXSTB(£U,T’)] < s+ Ex[1{73(%74)>3}EXSTB(XS,27~)]- (4.2)
Applying (E(V¥)) and using the doubling property of h,
csh(r) < s+ csh(2r) P (T > 5) = s+ csh(r)(1 — P (T, < 8)). (4.3)

Rearranging gives (4.1).
Next, let [ > 1, b = r/l, and define stopping times o;, i > 0 by

oy = O, Oijtr1 = inf{t Z O; . d<Xaz-7Xt> Z b}

Let & := 0, — 0,1, Fy: the filtration generated by { X, : s <t}, G, .= F, .



We have by (4.1)
P*(&11 < 1Gi) = Poi(Tp(x,, 0 < 1) < p+ ot /B(D),

where 0 < p < 1. As d(X,,, Xo,,,) = b, we have d(Xy, X,,) <, so that

1+1
o] = 22:1 & < TB(xyr)- D0, by Lemma 4.2,
It
log P* <t) < 2 V22D U2 lg(1/p) =
0g (TB(x,T) = ) Y <h(7“/l>> Og( /p) C6<

Now take [y € N the largest integer [ that satisfies
[t

h(r/1)

This is equivalent to 7/l > h™Y(cgt/r) where cg = 4c2/c2. Note: if r < h™Y(cgt/r), then

It

h(r/1)

)1/2 — C7Z.

il /2 > e )12, (4.4)

(ELD(WV)) holds by taking ¢; > 0 large. So assume (4.4) holds for small [ € N. Then,

[ <

r
<lp+1 d log P* <t) < —cqly/2.
h_l(CSt/’r> = U0 + ) arn Og (TB(ZU,T) — > — C7 0/

We thus obtain (ELD(WV)). 0



O

STEP 2: PROOF OF (VD) + (DUHK(V)) + (ELD(V)) = (UHK (V).

Fix © # y and t and let r := d(z,y), e < /6.
Let fiy = p)p.(a), A1 = {2z € X 1 d(z,2) < d(z,y)} and Ay = X — A;. Then
PR(Yi € By)) = P(Y € By), Yy € A)

—I—Pﬂx(}/;g c B€<y>,Y% ~ A2> = [ + I>.

_ t _
NOW7 [2 < PMJ;(}/; < BE(y)7 T < 5) — E’ux<17'<t/2/ pt—T<YTaw>d:u(w>)
Be(y)



< Pl(r < t)2) sup P22, 2)p(Be(y)), where 7 := Tp(,/2)-

2€B(x,r/2)UB¢(y)
By (ELD(V)), we obtain
Cor
L<al  sup  pya(2,2)u(Be(x) w(Be(y)) exp (- h_ft ).
2€B(x,r/2)UB¢(y) ( /’I“)

For Iy, by the symmetry of pi(x, y),
Pﬂxﬁﬁ c B€<y>,Y% c Al) = Pﬂyﬁﬁ c B€<ZIZ>,Y% c A1>

which is bounded in exactly the same way as Io,where x and y are changed. So,

Cor

Pr(Y; € Be(y)) < alf sup Piy22, 2)) U Be(2)) p(Bely)) exp ( — 7= 77-=).
2€B (2, /2)UB(yr/2) (t/r)
By (DUHK () and (VD),
C3 T+ \If_1<t> o
zeB(x,r/S;BB(y,r/z) Pyl 2) < V(z, ‘I’_l(t»( w=i(1) -
If U(r) < t, this is bounded by ¢,V (z, U~1(¢))~t If U(r) > ¢, then, Ve > 0, e, > 0 s.t.
r+ UL(t) er

( \If_1<t) )a GXp( o h_1<t/7“>> < Ce.



This is because M = r /U~ (t) & h(r/M) =tM/r = M < r/h~(t/r). In any case,

CeT

V(ZE, \P_l@»,u(Be(x)),u(Be(y)) EXp ( R h_1<t/7“>)

Pﬂx(Yt S B€<y>> <

Dividing both sides by u(B(x)), u(B(y)) and using cont. of p;(x,y) gives (UHK(V)).o

STEP 3: PROOF OF (VD) + (ELD(V)) = (DLHK(V)). Using (4.1),

CoT

W1t/

Hence, by choosing r s.t. c3U(r) < t < cqW(r) for e, cq > 0, we have

P*(Y; ¢ B(x,r)) < P(TB(Q;,T) <t)<crexp(—

P*(Y; ¢ B(x,7)) <c5 < 1.
Thus P*(Y; € B(z,r)) > 1 —¢5 > 0. By Cauchy-Schwarz,

(1 — 5 < P(Y; € Bla,r))? = ( / ) < VPt 2)

Now, using the lower bound of our choice of t and (VD), we obtain the result. n



STEP 4: PROOF OF (VD) + (DUHK(V)) + (EHI) + (E(V)) = (NLHK(V)).

(Scketch) Fix z € X, ¢t > 0 and set R := ¥~1(¢/e) (¢ > 0 will be chosen later).

e Similarly to Step 3, if € > ¢9, we obtain

C1

P 2 P Ty

where B := B(z, R). (4.6)

o Set f(y) := OpP(z,y). Applying Proposition 9.9 (time derivative) to p?,

2 2
W) < 2\ Pl opba.y) < S\ @ oppy),  yeB

By (DUHK(¥)) and (VD), da, o > 0 s.t.

. . d2,y) 0 _ call + )"
P ) S ) S V) e S veeay Y
Hence, by (VD), we have
f) <20y g (47)

tV (z, U=l(t))’



e Define u(y) = pP(z,y). Then, du = Apu, so u = —GP(Ou) = GP f, where GP =
(—=Ap)~1is the Green operator. Let v > aa’/2 and apply Proposition 9.6 (Oscillation

inequality, (EHI) is used here) with 7! instead of €. Then, 3§ > 0s.t. 0 < Vr < R,
Oscp(pont < 2(E(x, 1) + " E(z, R)| [l oo,

where E(z,r) := sup, E*[Tp()]. By (E(¥)) and (4.7), we obtain

U(r) + e T(R) eyl +e )/
t V(e UL()

OSCB(I,(ST)U <

U (R)

f— fy
7 E'.

e By definition of R,

Choose 7 by the eq. W(r) = "M W(R), (so r > &R for 30" > 0). Hence,
20467 (1 + e~ ")/?
Vi, U=H(1))
Choosing € small enough and combining (4.8) with (4.6), we conclude that

01/2
V(x, U1(t))

>0 (ase —0).  (4.8)

OSCyEB(w,éd’R)pF (z,y) < OSCB(x,ar)U <

Yy € B(z,50'R). o

pi(x,y) > pP(a,y) >



STEP 5: PROOF OF (VD) + (NLHK(V)) = (LHK(V)).  Chain argument.

(Scketch) Let € = (¢, d(x,y)) > 0 be s.t.
cit < h(e)d(z,y) < cot. (4.9)

Due to (NLHK (V)), we should only consider the case W(d(x,y)) > Cgt, which means
e < cgd(x,y) for deg > 0. Take N € Ns.t. N < d(x,y)/e.

Let {x;}, be such that zg = z, 2y = y and d(x;, z;41) < e fori=0,1,---, N — 1.



(Such a seq. exists by the choice of N and by the fact that d is a geodesic met.) Then,

pi(z,y) = / "'/pt/N($721>pt/N(Z1722)"'pt/N(ZN—1>y>dM(Zl>"'d:u(ZN—l)
X X
Z/ / pt/N(fIf?Zl)"']%/N(ZN—l,y)dM(Zl)"'dM(ZN—1>-
B(r1,¢) B(zn_1.€))

Clearly d(z;, ziy1) < 3e. Now, by the choice of € and N, we have e < U~ (%).
This together with (NLHK(V)) and (VD) and (4.12), we have

( ) > % > o >
Ziy & - — o .
PUNVES 2500 = 501 IN)) = Vi, -L(E/N)) = V(s e)
N-1 | N _
So, mils,g) > cs H cs - V(i €) S Cg - exp(—coV)

Ve, W=1(t/N)) -7 Viwne) = Vi, U7H(E/N)) — Vi, U-1(1)
On the other hand, by (4.9) we have h=1(t/d(z,y)) < c11€, so that

d(z,y) < e d(z,y)

M= 1t /d(e,y))

We thus obtain (LH K (WV)).



4.2 Proof of (¢) = (d)

Lemma 4.4
(VD) + (PI(W)) + (CS(V)) = (RES(WV)).

PROOF. (VD) + (PI(¥)) = (RES(¥))>

f: attains the minimum in the variational formula of R(B(xy, R), B(xg, 2R)°).
f = fB(x0,3R) fdu/V (xo,3R). Choose yg s.t. d(xg,yg) = 5R/2.
By (9.1) (due to (VD)), V(yo, B/2) > 2V (x0, R).
Depending on f > 1/2or f < 1/2, |f — f| > 1/2 on either B(xg, R) or B(yo, R/2),
and then using (PI(V)) we have

V(e R) < e /B U PP ey / AL(f, f)

B(xg,3R)
= cyU(R)R(B(xo, R), B(xo,2R))Y.  ©



(VD) 4+ (CS(¥)) = (RES(V))<

@: a cut-off function for B(xg, R) given by (CS(WV)).
Taking f =1, I = B(xy, R) and I* = B(xg,2R) in (3.5), we obtain

R(Blan, /2, Blao R) ' < [[dV(oe) < ctlR)? [ du< e
The rest is to show (VD) 4 (PI(V)) + (CS(V)) = (EHI).

Recall the Moser’s argument in subsection 2.4. The crucial loss for the case 8 # 2 is in
using the bound (2.6); one needs a cutoff function ¢ such that the final term in (2.7) can
be controlled by a term of order R~7.

Fixx € X, R > 0. ¢ = ¢, g the cut-off function in (CS(V)).

Define the measure v = v, r by

dy = dp + V(R)dI (¢, p).



The first step in the argument is to use (CS(W¥)) to obtain a weighted Sobolev inequality.

Proposition 4.5 Let s < R and J C B(xg, R) be a finite union of balls of radius s.

dk > 1,¢1 > 0 s.t.

[P < aw@u) [ dngp s R a0 [
where J* ={y : d(y,J) < s}.

(Strategy of the proof): Prove weighted Poincaré ineq. first, and then prove the weighted

Nash ineq., which deduce the desired inequality. See subsection 9.8 for details.

The next result is the generalization of Lemma 4 of [69] to the case of a MMD space.

Lemma 4.6 Let D be a domain in X, let u be positive and harmonic in D, v = uF,

where k € R, k # %, and let n be supported in D. Suppose fD dl'(n,n) < oo, then

/D 2dl(v, v) < (2;ﬁ y /D v2dI(n, ).




w: harmonic and nonnegative in B(xg,4R). (W.l.o.g. suppose u is strictly positive.)
Remark. We do not initially have any a priori continuity for u.

Proposition 4.7 Let v be either u or u™'.

dey s.t. if B(x,2r) C B(xo,4R) and 0 < q < 2, then

ess supB(w/Q)UQQ < V(z, 2T)1/ (U(r)dD(v?, v?) + v*dp).
B(x,2r)

PROOF. (Sketch) ¢g: cut-off function given by (CS(V)) for B(x,r). h, :=1—27" and

oe(@) = (polz) = he)",  dyo = dp+ VU (r)dl (o, o), A :={z: @o(x) > hi}.
Then, pu(Ar) < V(x,r)=:V.
[Holder cond. on ¢ by (CS(V))] = [if € Agy1,y € A, then d(x,5y) > c3r27 %] =

[or > 427" on AZ’fH =: A}, where 55, = %037“2_1“/9]. By Proposition 4.5 with f = v,

(v FHdy)" < eV U(r) / dr(f, f)+2°" | fdvyl.

A1 A§<;+1 Ay,



o

By Lemma 4.6, we have the ‘converse to the Poincaré inequality’ for f = v?;

w(r) /A () < Ve [ n ) < e ) [ garts

k+1 A§<:+1 Ay
2p 2 2 ok, 2D 2 2
< g2 (r J2dU(pr, pr) < c102 f=d.
Ny [, Pl < e 20 |
_ . p 2p _
SO7 (V L f2 d’}/())l/ S (311< )22%‘/ 1/ de’)/(). <421)
Akt1 2p —1 Ag,

Now, argument similar to the first part of Moser’s argument.

qo := ¢'x~" for 3i, p, == 2qor", and ¥y, =[p(A;)~"! fAk T e



Note that ppy1/2k = pp/2. Applying (4.21) to f = vPe+1/(2%) = yPe/2 we have

qjilﬂl/% — (M(AkH)l/

Apy1

vp’fﬂal%)l/’“6 < 01322k<,LL<Ak)1/ vPhdryg)= c1322F WPk,
Ay,

Hence, log U, < log Wy + Zp,;l log(c152%%). (4.22)
k=1
As the sum in (4.22) converges and ess Suppg, /o)t < limsup,,, o, Uy,

€SS SUP (., /2) 0 < Cc1aWp < 015(‘/1/ ’UQqu%)l/(QQO).
B(x,r)
Let ¢ € (0,2); we can take gy = ¢’k ™" < ¢q. By the weighted Poincaré ineq. (Prop 9.20),
v

2q0
</ - d%)q/qo < 016/ —dyp < C18V1/ (U (r)dl (v?, v?) + v*4dpu).
B(z,r) vV B(z,r) 4 B(z,2r)

So, we conclude

ess supB(x’T/Q)’UQQ < 18V (x, 27“)_1/ (U (r)dl (v, v?) + v*9dp). o
B(x,2r)



Recall that ¢ is a cut-off function for B(x, R) given by (CS(W)). We define
Qit)={z px)>t}, 0<t<l.
Corollary 4.8 Let 1 > s >t > 0. There exists ( > 2 such that if 0 < g < %,
ess supQ(S)UQQ <ci(s—t) V(g R)} /Q( | v dry.
t

The following corresponds to the second part of Moser’s arguments.

Proposition 4.9 Let w = logu, and write w = V (zg, R) ™ fB(IO Ry W du.

(a) / AT (w, w) < e L F0 F)
B(x0,2R) \P(R)

(b) / dy < 02v<x02’ R>, for 0<t<s<l.
{lw—[>A}NQ(s) A

To get the Harnack inequality:.



e [68]: generalization of the John-Nirenberg inequality with a complicated proof.

e Bombieri [22]: avoid such an argument for elliptic second order diff. egs.

e Moser ([67], Lemma 3) carried the idea over to the parabolic case

e Bombieri-Giusti ([23], Theorem 4): ineq. in an abstract setting ([72], Lemma 2.2.6)

Using these, we can show that Corollary 4.8 and Proposition 4.9 (b) give
€SS SUP (. 1/2) IO U < C1. (4.26)

Let v = w™!. The same argument implies

€SS SUPp(y r/2) 108V < €1, OF €8s Infp(y ryoy log u > —c1. Combining we deduce
e~ <ess infp(y rjoyu < €8S SUpp(, gyt < €7
Theorem 4.10 dc; s.t. if u s nonneg. and harmonic in B(xg,4R), then

€SS SUPB(xO,R/2)U S C1€SS me(xO’R/Q)u.



